Invertebrate Survey of Hakalau National Wildlife Refuge, Hawaii

Final Report

November 2003
FINAL REPORT

Invertebrate Survey of Hakalau Forest National Wildlife Refuge, Hawaii

Prepared for
United States Department of the Interior
U.S. Geological Survey
Reston, Virginia, 20192

Prepared by
Francis G. Howarth, David Preston,
Fabio Moretzsohn and Myra McShane
Hawaii Biological Survey
Bishop Museum
Honolulu, Hawaii 96817

November 2003
Contribution No. 2003-21 to the Hawaii Biological Survey
The essential role that invertebrate species (snails, insects, and other arthropods) play in supporting native Hawaiian ecosystems has long been recognized, especially given the large biomass and numbers of species represented by these groups. However, both the distributions of invertebrate species in Hawaii and their precise ecological relationships are not well-understood. Hakalau Forest National Wildlife Refuge was established to protect and manage native forest birds and their rainforest habitat, including plants and invertebrates. It is essential to the refuge’s ecosystem preservation program to have a rigorous list of invertebrate species and an understanding of the role they play in ecosystem dynamics. Thus, knowledge of the invertebrate species present in The Refuge and the ecosystem role that they perform was identified by the U.S. Fish and Wildlife Service as essential to fulfilling the Refuge’s goal of preservation of native Hawaiian rain forest. This project was undertaken to address these lacunae by:

- (1) Developing taxonomic lists of species potentially occurring in the Refuge; and
- (2) Conducting a baseline invertebrate field survey of the Refuge.

The goals of the project are consistent with the overall goals of the Invertebrate Conservation Program of the Ecological Services section of the USFWS Hawaii office and their strategic plan for conservation of native invertebrates in the Hawaiian Islands.

The 32,733-acre Hakalau Forest NWR, which was established in 1985, is located on the windward slopes of Mauna Kea, Island of Hawai‘i and contains some of the finest remaining stands of native montane rainforest in Hawaii. The elevation ranges between about 3,000 feet in the east to over 6,500 feet in the west. The slopes below 4,000 feet are very wet, receiving 250 inches of rain annually. Rainfall diminishes with elevation with the upper boundary receiving 100 inches or less. The vegetation changes accordingly from bogs, fern patches and scrubby forest below 4,000 feet to very wet ohia forest between 4,000 and 5,000 feet, then a narrow strip of wet ohia koa forest, which gives way to mesic then drier koa forest. Above 5,000 feet the native forest is in various stages of recovery from its former use as cattle pasture. The Refuge supports a great diversity of native plants and animals, many of which are endangered and some which are unique to the Refuge.

The invertebrate fauna (especially insects) of the Refuge is undoubtedly enormous and a comprehensive inventory of all species was beyond the scope of the proposed project. We therefore focused on the small number of species listed as candidates for endangered or threatened status and on the much larger number listed as “species of concern.” Among the latter group, the land snails (Gastropoda), beetles (Coleoptera), true bugs (Heteroptera), moths (Lepidoptera), damselflies (Megalagrion spp.), and endemic picture-winged flies (Drosophila spp.) were emphasized. The presence and distribution of notable harmful aliens, such as ants, the two-spotted leafhopper, and the invasive yellowjacket wasp was also emphasized.

The Hawaiian Islands are the most isolated group of oceanic islands in the world. Because of this isolation, the plants and animals that originally colonized the islands have been able to evolve into a myriad of different species that are unique to the islands and found nowhere else on earth. For example, there are about 750 endemic species of land snails (Cowie et al., 1995a; Cowie, 1996), 1,000 or so endemic species of flowering
plants (Wagner et al., 1999), and over 5,000 endemic insect species (Nishida, 2002). The native birds radiated evolutionarily from a small number of colonizers into a spectacular array of diverse species that have attracted great interest among evolutionary biologists (Freed et al., 1987).

Many of these native species are already extinct; most of the others are seriously threatened and often confined to small pockets of their former ranges, usually high in the mountains (e.g., Hadfield, 1986; Loope, 1998). The Hawaiian Islands have therefore been dubbed the “extinction capital of the United States” (Loope, 1998). For example, over 50% of the endemic birds are now extinct (Loope, 1998), as are probably about 90% of the endemic land snails (R.H. Cowie, unpublished). The islands contain one third of the species listed in the U.S. as endangered under the federal Endangered Species Act. Probably, many more deserve listing.

Island species are extremely vulnerable to extinction (Simberloff, 2000). Because of the isolation of the Hawaiian Islands and because of the uniqueness of its biodiversity, the plants and animals of Hawaii provide probably the most dramatic example of the vulnerability of island ecosystems. The twin paramount threats to biodiversity—habitat destruction and alien species introductions (Cox, 1999)—are exhibited in Hawaii more dramatically than anywhere else on earth. Hawaii is a microcosm illustrating in graphic style the destruction of the entire world’s natural legacy. As such, they offer a natural laboratory to study endangered species and especially to develop management approaches for their conservation.

This report is divided into two main sections: Part 1 concerns the mollusks, and Part 2 treats the terrestrial arthropods. Part 2 is further subdivided into separate sections prepared by collaborators, specifically a main section on terrestrial arthropods by Hawaii Biological Survey staff; a chapter on the status of the true bugs (Heteroptera) by Dr. Dan Polhemus of the Smithsonian Institution; and a chapter on the status of native Drosophila and distribution of selected harmful alien species by Dr. David Foote of USGS/BRD, Volcano, Hawaii.
Introduction

The Hakalau Forest National Wildlife Refuge was established to conserve native forest birds, their rainforest habitats, and the plants and invertebrates occurring within. It’s essential to the Refuge’s ecosystem preservation program to have a rigorous list of invertebrate species and an understanding of the role they play in ecosystem dynamics. These are poorly known for invertebrates in general in the Hawaiian Islands, but virtually unknown in the Refuge aside from limited studies on invertebrates as critical food resources for native birds. There is a lack of inventory of invertebrates in the Refuge, and this survey addresses this problem.

The goals of this project are to conduct a baseline survey of the molluscan fauna at the Hakalau Forest NWR, and the compilation of a taxonomic list of the mollusks potentially occurring in the Hakalau Forest NWR, both considered important to the success of the conservation of the Refuge.

Land snails of Hawaii

Of the over 750 recognized species of native land snails in the Hawaiian Islands all but four or fewer are endemic to the archipelago (Cowie et al., 1995a; Cowie, 1996). The great majority of these species are either extinct or close to extinction (Solem, 1990). Causes of this dramatic decline, which is predominantly a 20th century phenomenon, include destruction or modification of habitat, shell collecting, and impacts of alien species (especially rats and predatory snails) (Hadfield, 1986; Solem, 1990; Hadfield et al., 1993). Native species are being replaced by a relatively small number of widespread, mostly synanthropic, introduced species (Cowie, 1998). A total of 60 nonindigenous land snail or slug species has been reported as having been introduced to the Hawaiian Islands, with 21 established (Cowie, 1997, 1998). New species are continuing to be introduced and continue to spread around the archipelago (e.g., Cowie, 2000).

The Island of Hawaii had 126 recognized native land snail species (Cowie, 1996; Cowie et al., 1995a). Many of these are probably extinct. An additional 34 or more introduced species have been reported from the island (Cowie, 1997, 2000). Many of these alien species appear associated with the horticultural trade (Cowie, 2000).
Land snails—endangered status

The entire land snail genus *Achatinella* (41 species), which is endemic to the island of Oahu, is listed as extinct or endangered. A few others are listed as candidates, but almost the entire remaining land snail species in the fauna are listed as species of concern.

Four species of land snails from the Island of Hawaii were formerly listed by the U.S. Fish and Wildlife Service (USFWS) as category 2 candidate species under the Endangered Species Act. Since the change in USFWS procedures, these taxa are now listed as species of concern. They are *Partulina confusa*, *P. horneri*, *P. physa* (all tree snails) and *Leptachatina lepida* (ground-dwelling). Although these four species are the only species from the Island of Hawaii that were ever formally listed as candidate species, it is widely acknowledged that the majority of the native land snails of the Hawaiian Islands are severely threatened (if not already extinct) (e.g., Solem, 1990). Probably almost all native Hawaiian land snail species should be listed as species of concern. This is the approach taken by the FWS, which currently lists 93 other taxa from the Island of Hawaii, almost the entire land snail fauna of the island, as species of concern. This list does not include any species of Achatinellidae other than the three *Partulina* species. This omission is a result of an oversight, as at least some of the other achatinellids (e.g., *Auriculella* spp., *Tornatellaria* spp.) should undoubtedly be included (Stephen E. Miller, FWS, personal communication).

Methods

This survey is part of a larger study that included the terrestrial arthropods. Some mollusks were collected during the arthropod sampling. The present survey of the terrestrial land snails and slugs of the Hakalau Forest NWR was conducted by David Preston and Fabio Moretzsohn, of the Hawaii Biological Survey (HBS), Bishop Museum, between 10-15 March, 2003.

Sampling was done along two elevational transects already established within the Hakalau Forest NWR, the Pua Akala, in the southern part, and the Maulua tract, in the northern part (Fig. 1). Additional sampling was conducted in the Hakalau tract, along the dry gulch and surrounding areas near the University of Hawai‘i Hakalau Forest Biological Field Station.

Surveys were undertaken in the Hakalau Forest NWR using standard sampling techniques for snails and arthropods. These techniques have been used extensively by HBS personnel in multi-taxon biodiversity surveys elsewhere on the Island of Hawaii (e.g., Cowie & Nishida, 1993; Cowie *et al.*, 1995b; Evenhuis *et al.*, 1996; Cowie *et al.*, 1999a, b; Howarth *et al.*, 1999), as well as at other locations in the Hawaiian Islands (e.g., Evenhuis & Cowie, 1994; Cowie *et al.*, 1999c), and the islands of the Pacific (Cowie *et al.*, 1996; Cowie & Cook, 1999, 2001; Cowie, 2001).

At each of the survey stations, separate samples were taken from vegetation and from the ground. Randomized quadrat sampling, that is, collecting all snails in a pre-determined,
randomly identified fixed area, is inappropriate for this kind of inventory survey of land snails, especially for small species such as many of those that constitute the Hawaiian fauna (e.g., Solem, 1976), because of their extremely localized micro-distribution patterns (Cowie, et al., 1995b). Instead, timed sampling (collecting all snails found in a fixed time period at a number of places identified by an experienced individual as likely to harbor snails, such as rotting logs, the bark of large trees, the undersides of leaves and inside the hollow stem of ferns within a relatively broadly circumscribed area) has generally been found to be more appropriate (e.g., Cowie et al., 1995b; Emberton et al., 1996) and was the approach adopted in this survey. Over an area approximately 30 m in diameter, two people searched the vegetation for 20 minutes and the ground and leaf litter for 20 minutes. All snails, including dead shells, and slugs were collected. Additional specimens were collected incidentally between stations (Schilthuizen & Rutjes, 2001).

Leaf litter samples were sieved with a ¼ inch mesh width in the field, until a volume of approximately one liter of sieved litter and soil was collected and stored in a large ZipLoc bag. Upon sieving the litter, large leaves, twigs and bark pieces were inspected for snails and slugs before being discarded, because slugs attach themselves to leaves and may not be easily dislodged during sieving. Litter samples were sorted in the lab under a dissecting microscope to look for minute snails that in the past were once common in Hawaii’s forests.

Live specimens were drowned by immersion in water for 12 hours, rinsed in water to remove some of the mucus, and preserved in 95 % ethanol. All collected material were brought to the Bishop Museum for sorting and identification by comparison with the Museum’s extensive malacological collections, and will be held as vouchers in the Hawaii Biological Survey malacological collections at the Bishop Museum.

A portable GPS (Global Positioning System) receiver and an altimeter were brought to record the coordinates and elevation, respectively, of collection sites. However, there were problems with the operation of the GPS in the field, and it was not possible to record the coordinates. Since the samples were collected along transects with known coordinates, elevations were used to find the coordinates for collection sites along the transects, using the software TOPO, by DeLorme, which is based on the USGS topographic maps (1: 24,000). Maps were produced in TOPO, and legends and composite inset map were created in Adobe Photoshop.

Identification of the snails and slugs collected was done by comparison with the material in the extensive malacological collection of the Bishop Museum, and by reference to the literature. In particular, Barker (1999) presented a detailed description of the external morphology and anatomy of the alien species in New Zealand, some of which also occur in Hawaii. The identifications were confirmed by Mr. Daniel Chung (Kapiolani Community College, and formerly Bishop Museum) who dissected some specimens to corroborate the identifications.
Results

Table 1 shows the summary of the species found at each station. A total of 231 live specimens and 111 empty shells were collected at 26 collection sites along two elevational transects, the vicinity of the Hakalau Field Station, and in a few sites (“Chopper site”) in lower elevation (4200 ft.). An annotated checklist of the native and introduced non-marine snails and slugs to the Island of Hawaii is shown on Table 2. Figure 1 shows the boundaries of the Hakalau Forest NWR and the tracks surveyed for snails.

In the Maulua Tract (Fig. 2), the northern part of the Hakalau Forest NWR, 8 collection stations were made between 4640 and 5640 ft. elevation, resulting in 96 live specimens and 39 empty shells. Some snails were found in between stations on fallen banana poke fruits that had been partially eaten by birds.

In the Pua Akala Tract (Fig. 3), the southern part of the Hakalau Forest NWR, 12 collection stations were made between 5150 and 6240 ft. elevation, resulting in 48 live specimens (empty shells were not collected at Pua Akala).

The Hakalau Tract (Fig. 4) was surveyed along the dry gulch in the vicinity of the University of Hawai‘i Hakalau Forest Biological Field Station, between 6335 and 6410 ft. elevation, resulting in 76 live specimens and 72 empty shells from 6 collection sites. *Oxychilus alliarius* was abundant in several stations. Because this was a qualitative study, only some specimens were collected.

The Chopper Site (Fig. 2.4), a site at elevation around 4200 ft. in the Pua Akala tract, was sampled during the arthropod survey by Howarth and Preston (October 2002 - Part 2 of this report). Five live specimens of snails and 5 live specimens of slugs were found in 4 out of 5 sites surveyed for arthropods.

Taxonomic account

Family Achatinellidae

Genus *Tornatellides* Pilsbry, 1910

Tornatellides sp.

The family Achatinellidae had an incredible radiation in the Hawaiian Islands. Cooke and Kondo (1960) reviewed the Achatinellidae, and recognized 58 species in *Tornatellides*, 48 of which confined to Hawaii (83%). Only the anatomy and shell of a few species were listed and illustrated, therefore it was not possible to identify to the species level the *Tornatellides* sp. collected in this survey. Cowie and Nishida (1993) and Cowie et al. (1995) could not identify specimens of *Tornatellides* sp(p) found on the leeward slopes of Mauna Loa, at elevations similar to those at the Hakalau Forest NWR.

The specimens of *Tornatellides* sp. found at the Refuge have a small (less than 3 mm in length), translucent, conical shell. One specimen was collected at the Maulua Tract, and
the other in the Pua Akala Tract, both found among ohia (*Metrosideros polymorpha* Gaud.) leaf litter.

Previous reports of *Tornatellides* sp. in Hawaii include: Caum (1928), Cooke and Kondo (1960), Chung and Cowie (1991), Cowie and Nishida (1993), and Cowie *et al.* (1995).

Family Arionidae

Genus *Arion* Férussac

Arion intermedius Normand, 1852

Recommended common name: Glade slug (Barker, 1999); Hedgehog slug (several sources in the gardening literature).

The species may be more widely distributed in the Hawaiian Islands than previously suspected (Cowie, 1998). In this survey, a total of 93 small specimens (ranging from 5 to 18 mm) were found in almost all sites sampled, and were locally abundant. Dissection of one of the larger specimens showed that it was a subadult, suggesting that sexually mature adults are probably small for the family (D. Chung, pers. comm., Sept. 2003). Barker (1999) reported adults of this small slug as ranging from 10 to 25 mm in extended length in New Zealand.

Arion slugs are usually omnivorous, and have a life span of about one year. *A. intermedius* is known for having a predominantly uniparental, probably autogamic breeding system, and mating has never been observed (Barker, 1999; Chung, pers. comm., Sept. 2003). In New Zealand, *A. intermedius* is locally abundant in pastures, hedgerows, plantation forests and in native forests. It can penetrate deep into undisturbed forest from areas disturbed by man. This slug is active during most of the year, even during the coldest months (Barker, 1999).

Previous reports of *Arion* sp. in Hawaii include: Lewin & Lewin (1978) in Cowie (1997), and Cowie (1998).

Family Succineidae

Genus *Succinea* Draparnaud

Succinea cf. cepulla Gould, 1846

This is another family with a great radiation in the Hawaiian Islands. Cowie *et al.* (1995) listed 42 species from Hawaii. Taxonomy in this family is difficult and in need of revision, and proper identification may not be achieved without dissection. Therefore, the species found in this survey is tentatively identified as *Succinea cf. cepulla*, by comparison with preserved specimens deposited in the Bishop.
Only two specimens of *Succinea* cf. *cepulla* were found during the arthropod survey done by Howarth and Preston (October 2002), at sites at about 4200 ft. elevation in Pua Akala.

Previous reports of *Succinea* spp. in Hawaii include: Cooke (1921), Caum (1928), Chung & Cowie (1991), Cowie & Nishida (1993), and Cowie *et al.* (1995).

Family Zonitidae
Genus *Oxychilus* Fitzinger

Oxychilus alliarius (Miller, 1822)
Recommended common name: Garlic glass snail (Barker, 1999); gardening literature: Garlic snail.

Widespread as native in northern and western Europe. Introduced into Greenland, North America, St. Helena, South Africa, Juan Fernandez, Australia and New Zealand (Barker, 1999). First recorded in Hawaii in 1937, probably accidentally introduced (Cowie, 1998). It has been recorded at 6000 ft elevation on Maui, between 2600 and 7200 ft on Hawaii, and also on Kauai and Molokai.

When disturbed, the snail produces a strong garlic smell, hence the specific name (Latin: *allium* = garlic), and the vernacular name, Garlic snail. This garlic scent is a good diagnostic character for the species (Cowie, 1997). Barker (1999) reported that in experiments using hedgehogs (the mammal, not the hedgehog slug) as predators, *O. alliarius* was rejected while other species of *Oxychilus* which do not produce the strong odor were readily consumed. This predation avoidance strategy may have contributed to *O. alliarius*’ success in colonizing high elevation areas in Hawaii.

Oxychilus alliarius was the most abundant mollusk found in the Hakalau Forest NWR, especially in the Maulua and Hakalau Tracts. It was found in large numbers in the leaf litter, on mossy rocks, fallen bark of trees, and under rocks. Live specimens of *O. alliarius* were often found eating fallen ‘banana poka’ (*Passiflora mollissima* (Khunt)) fruits on the ground. Sediments carried by the rain often had tens to hundreds of old shells in the Hakalau Tract. Fresh shells of this species are glossy, translucent yellowish brown, but old and decaying shells become dull and chalky near the umbilicus. Only some specimens were collected at sites with high abundance. A total of 100 live and 111 empty shells were collected in this survey.

Family Agriolimacidae
Genus *Deroceras* Rafinesque

Deroceras laeve (Müller, 1774)
Recommended common name: Marsh slug (Barker, 1999).
D. laeve is a cosmopolitan terrestrial slug which has been generally assumed to be native to the Palearctic region, which has been introduced by man into most suitable areas worldwide (Barker, 1999). It was first recorded in Hawaii in 1897 (Cowie, 1997) or 1896 (Cowie, 1998). It has probably become established on all main Hawaiian Islands, including Lanai. It has been recorded at 2000 ft on Kauai, 2000 ft on Oahu, and 5000 ft on Maui (Cowie, 1998).

In this survey, it was common at the Halakau Tract, from 5350 to 6380 ft. elevation, under rocks and in the wet leaf litter under koa trees. A total of 15 specimens were collected.

Deroceras laeve is omnivorous, opportunistically predaceous on slow-moving animals such as earthworms, aphids, and insects caught on spider webs. It is highly aggressive towards other mollusks, and is cannibalistic. This species has been reared uniparentally for many generations in the lab, and its low heterozygosity suggests self-fertilization (Barker, 1999).

The family Agriolimacidae has recently been reinstated after having been grouped with Limacidae (Barker, 1999). Until recently, the name Agriolimax Mörch, 1865 was used in the literature, but Deroceras Rafinesque Schmaltz, 1820 has priority.

Family Limacidae
Genus Limax Linnaeus, 1758

Limax maximus Linnaeus, 1778
Recommended common name: Tiger slug (Barker, 1999); gardening literature: Leopard slug.

Limax maximus is a large slug (reportedly up to 200 mm in length), probably introduced from Europe. Its distinct longitudinal dark markings give the slug its popular name, Leopard slug. This species was first recorded in Hawaii either in 1931 or 1949 (Cowie, 1997), depending on whether the first record does refer to this species or not. Its introduction was probably accidental (Cowie, 1998). The species is established in Hawaii. Ten small (15-40 mm) specimens, probably juveniles, were found during the survey at the Pua Akala and Hakalau Tracts.

In New Zealand, Limax maximus is common in gardens and buildings, and margins of native forests, but it does not seem to penetrate far into undisturbed forests, although it can be abundant in modified forest remnants and secondary forests (Barker, 1999). This nocturnal slug feeds primarily on decaying plant material and fungi, but because it shows aggressive behavior towards other slugs, it is often erroneously regarded as a predator (Barker, 1999). Therefore, although it may cause damage to the native flora, L. maximus probably does not present a problem to native fauna at the Hakalau Forest NWR.
Discussion

A total of 142 named species (and 20 subspecies) of native non-marine snails and 43 species of introduced snails and slugs have been reported from the Island of Hawaii (Table 2). There are no native slugs in the Hawaiian Islands. A number of native species remain unnamed. Solem (1976) estimated that 199-205 Hawaiian endodontoid species are represented in the Bishop Museum collections, of which only some 32 are described (31 Endodontidae and 1 Punctidae)(Cowie et al., 1995a).

The habitat and ecology of Hawaiian snails are poorly known, but most endodontids are believed to have inhabited forests. Habitat destruction and alien species are considered the two major problems faced by native species of plants and animals in Hawaii (e.g. Howarth, 1990). Among the most damaging alien species to native snails include: pigs, rats, alien predatory snails and ants (Hadfield, 1986; Solem, 1990). Cowie (unpublished) estimated that about 90% of the native snails may already be extinct.

Only a few specimens of two native species were found: Succinea cf. cepulla, and Tornatellides sp. Although an effort was made to sample representative habitats in the Hakalau Forest NWR, only part of the Refuge was surveyed, and other native snails may occur in the area. Subsequent surveys should look for snails in other areas of the Refuge not sampled in the current survey to complement the molluscan inventory.

In contrast, four introduced species, one a land snail (Oxychilus alliarius), and three slugs (Arion intermedius, Limax maximus, and Deroceras laeve) were found at the Hakalau Forest NWR. It should be noted that O. alliarius was abundant in many sites, especially in the Hakalau tract. A. intermedius, only recently reported from Hawaii (Cowie, 1998), was also very common in most sites, and is probably widespread in high elevations on the Island of Hawaii and perhaps Maui.

The montane rainforest of the Hakalau Forest NWR may have similar ecological characteristics (e.g. temperature, humidity, etc.) to parts of Europe where the four alien species of mollusks found in this survey are native. These four species have also been reported from other temperate habitats, such as New Zealand (Barker, 1999), northern continental USA and southern Canada, and have wide distribution in Europe. These are probably the result of accidental anthropogenic introductions (Cowie, 1998). In the Hakalau Forest NWR, these introduced mollusks were more abundant in regions more disturbed by pigs than those less disturbed by pigs. It is conceivable, then, that despite predation, pigs may contribute to the dispersal of alien snails and slugs. It is also possible that pigs are attracted to areas where snails and slugs are more abundant. Gagné (1983) reported the slug Milax gagates severely affected native greenswords on the slopes of Haleakala, Maui, and were an important attractant, encouraging rooting by pigs. Other slugs could be playing similar roles at the Hakalau Forest NWR (Howarth, pers. comm.).

Oxychilus alliarius is primarily a vegetarian snail, but it also predates on other snails and snail eggs (Barker, 1999). It has been suggested (Birding Hawaii, 2003) that O. alliarius may be a very effective food competitor for the endangered honeycreeper Po‘o-uli.
(Melamprosops phaeosoma Casey and Jacobi, 1974) on the slopes of Haleakala, where the last three known birds live. The Po‘o-uli diet consists mostly of mollusks, and to a lesser degree, arthropods and fruits. Severns (1984) reported that O. alliarius was negatively correlated with populations of native snails on Maui, and believed that predation by O. alliarius is a factor in the decline of native snails. In the Hakalau Forest NWR, O. alliarius is locally abundant, and may be a competitor to other native and even endangered species, as well as a predator of native snails.

Hand sampling in the field is by far the most time-efficient for large scale surveys of land snails, yielding ten times as many specimens and seven times as many species per person-hour compared with litter sampling (Emberton et al., 1995). Although the smallest species will be under-represented in terms of numbers of individuals if hand sampling in the field rather than a litter sampling approach is adopted, the far larger number of samples that can be analyzed means that these small species are still likely to be recorded (Cowie et al., 1995b). Previous surveys by HBS staff confirm that it is possible to see and collect even the very small species, both litter-dwelling and arboreal, using hand sampling in the field. The advantages of the far greater number of samples possible and therefore, the greater geographic area covered outweigh the disadvantages of undersampling of very small species, especially if presence/absence as opposed to relative abundance data at a particular station are required. Thus, hand sampling in the field was the approach adopted for this inventory survey. It permitted the collection of a larger number of samples and coverage of a larger area, and provided as complete a record of species presence/absence, as would the more precise but far more time-consuming litter sampling approach.

This first attempt to inventory of the native and alien snails and slugs, as well as other invertebrates (Part 2) of the Hakalau Forest NWR is a step towards a better understanding of the dynamics within the Refuge. More research is needed to ensure that the conservation plans are effective and to prevent further damage from habitat destruction and alien species introductions.

Acknowledgements

Mr. Daniel Chung kindly provided his expertise in dissecting specimens to confirm species identifications and discussed the identity of the snails and slugs collected at Hakalau Forest NWR. Ms. Regina Kawamoto also assisted with some species identifications. We are also thankful for Dr. Leonard Freed’s logistic support at the University of Hawai‘i Hakalau Forest Biological Field Station, Dr. David Foote, USGS/BRD for providing a vehicle and other logistic support, Mr. Jack Jeffrey, Hakalau Forest National Wildlife Refuge, for providing access and information on the field, and Ms. Lisa Hadway, State of Hawaii Division of Forestry and Wildlife, Natural Area Reserve Program, for a list of native snails that potentially occur in the Refuge. This survey would not have been possible without Mr. Preston’s knowledge of the forest and his field skills, as well as his help collecting specimens.
References

Fauna of New Zealand 38: 253 pp.

Birding Hawaii. 2003. The Po'o-uli - The World's Rarest Bird?

Caum, E. L. 1928. Check list of Hawaiian land and fresh water Mollusca. *Bernice P.
Bishop Museum Bulletin* 56: 1-79.

Chung, D.J.D. and Cowie, R.H. 1991. An archival inventory of the land snails of the

61: 36.

Papers of Bernice P. Bishop Museum* 7: 263-277, pls. 24-25.

Cooke, C.M., Jr. and Kondo, Y. 1960. Revision of Tornatellinidae and Achatinellidae

Cowie, R.H. 1997. Catalog and bibliography of the nonindigenous nonmarine snails and

Cowie, R.H. 1998. Patterns of introduction of non-indigenous non-marine snails and

Cowie, R.H. 2001. Decline and homogenization of Pacific faunas: the land snails of
American Samoa. *Biological Conservation* in press.

Cowie, R.H. and Cook, R.P. 1999. The distribution and abundance of land snails in the
National Park of American Samoa, with particular focus on Partulidae.
*Cooperative National Park Resources Studies Unit, University of Hawaii at

Cowie, R.H. and Nishida, G.M. 1993. Malacological inventory survey in the multi-
purpose range complex study area of the Pohakuloa Training Area, Island of
Hawaii. Honolulu, Bishop Museum.

Impacts of construction of the Palau Compact Road: survey of the non-marine
fauna of the island of Babeldaob. *Bishop Museum Report to Wil Chee Planning,
Inc.*, Honolulu. 44 p.

Cowie, R.H., Evenhuis, N.L. and Christensen, C.C. 1995a. Catalog of the Native Land
and Freshwater Molluscs of the Hawaiian Islands. Leiden, Netherlands: Backhuys

Cowie, R.H., Howarth, F.G., Preston, D.J., Rundell, R.J., Stone, F.D. and Montgomery,
S.L. 1999a. Proposed new Hawai‘i Island correctional facility, Waiakea, South
Hilo, Island of Hawai‘i: assessment of potential impacts on invertebrates (snails,

<table>
<thead>
<tr>
<th>No.</th>
<th>Transect/Location</th>
<th>Method employed</th>
<th>Date</th>
<th>Elevation</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Habitat/Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hakalau Track Bird Res. Stn.</td>
<td>General, host searching</td>
<td>11.iii.03</td>
<td>6410'</td>
<td>19°49.212'N</td>
<td>155°19.903'W</td>
<td>Pasture, Koa, out-planted native plants.</td>
</tr>
<tr>
<td>2</td>
<td>Hakalau Tr.</td>
<td>Sieve of Koa litter</td>
<td>12.iii.03</td>
<td>6385'</td>
<td>19°49.176'N</td>
<td>155°19.898'W</td>
<td>Ohia, Koa, Akala, Ferns, grasses, in dry streambed.</td>
</tr>
<tr>
<td>3</td>
<td>Hakalau Tr.</td>
<td>Genera, host search</td>
<td>12.iii.03</td>
<td>6385'</td>
<td>19°49.172'N</td>
<td>155°19.854'W</td>
<td>Ohia, Koa, Akala, Ferns, grasses, in dry streambed.</td>
</tr>
<tr>
<td>4</td>
<td>Hakalau Tr.</td>
<td>General, host searching</td>
<td>12.iii.03</td>
<td>6360'</td>
<td>19°49.188'N</td>
<td>155°19.784'W</td>
<td>Pasture, Koa, small tree ferns.</td>
</tr>
<tr>
<td>5</td>
<td>Hakalau Tr.</td>
<td>Host search</td>
<td>12.iii.03</td>
<td>6360'</td>
<td>19°49.184'N</td>
<td>155°19.744'W</td>
<td>Pasture, Koa, small tree ferns.</td>
</tr>
<tr>
<td>6</td>
<td>Hakalau Tr.</td>
<td>Sweep net</td>
<td>12.iii.03</td>
<td>6360'</td>
<td>19°49.172'N</td>
<td>155°19.693'W</td>
<td>Talus slope in pasture with Koa, small tree ferns.</td>
</tr>
<tr>
<td>7</td>
<td>Hakalau Tr.</td>
<td>Fog</td>
<td>12.iii.03</td>
<td>6335'</td>
<td>19°49.201'N</td>
<td>155°19.724'W</td>
<td>Fern fronds on mossy rocks.</td>
</tr>
<tr>
<td>8</td>
<td>Hakalau Tr.</td>
<td>General, host searching</td>
<td>12.iii.03</td>
<td>6335'</td>
<td>19°49.201'N</td>
<td>155°19.724'W</td>
<td>Koa leaf litter</td>
</tr>
<tr>
<td>9</td>
<td>Maulua Tr. 13</td>
<td>General, Host searching</td>
<td>11.iii.03</td>
<td>5200'</td>
<td>19°52.204'N</td>
<td>155°17.967'W</td>
<td>Under ferns at base of large Ohia tree.</td>
</tr>
<tr>
<td>10</td>
<td>Maulua Tr. 13</td>
<td>General, Host searching</td>
<td>14.iii.03</td>
<td>5640'</td>
<td>19°51.874'N</td>
<td>155°19.157'W</td>
<td>Under fern near large Ohia tree.</td>
</tr>
<tr>
<td>11</td>
<td>Maulua Tr. 13</td>
<td>Sieving</td>
<td>14.iii.03</td>
<td>5640'</td>
<td>19°51.874'N</td>
<td>155°19.157'W</td>
<td>Fern leaf litter.</td>
</tr>
<tr>
<td>12</td>
<td>Maulua Tr. 13</td>
<td>Sieving</td>
<td>14.iii.03</td>
<td>5640'</td>
<td>19°51.874'N</td>
<td>155°19.157'W</td>
<td>Leaf litter under fern.</td>
</tr>
<tr>
<td>13</td>
<td>Maulua Tr. 13</td>
<td>General, Host searching</td>
<td>14.iii.03</td>
<td>5640'</td>
<td>19°51.874'N</td>
<td>155°19.157'W</td>
<td>Under Koa tree.</td>
</tr>
<tr>
<td>14</td>
<td>Maulua Tr. 13</td>
<td>General, Host searching</td>
<td>14.iii.03</td>
<td>5550'</td>
<td>19°51.954'N</td>
<td>155°18.787'W</td>
<td>Ferns, Koa, and bark.</td>
</tr>
<tr>
<td>15</td>
<td>Maulua Tr. 13</td>
<td>General, Host searching</td>
<td>14.iii.03</td>
<td>5550'</td>
<td>19°51.954'N</td>
<td>155°18.787'W</td>
<td>Under ferns, Koa leaves, & rocks.</td>
</tr>
<tr>
<td>16</td>
<td>Maulua Tr. 13</td>
<td>Sieving</td>
<td>14.iii.03</td>
<td>5550'</td>
<td>19°51.954'N</td>
<td>155°18.787'W</td>
<td>Fern leaf litter nr. Koa.</td>
</tr>
<tr>
<td>16A</td>
<td>Maulua Tr. 13</td>
<td>General, Host searching</td>
<td>14.iii.03</td>
<td>5540'</td>
<td>19°51.954'N</td>
<td>155°18.807'W</td>
<td>Ferns, Koa, and bark.</td>
</tr>
<tr>
<td>17</td>
<td>Maulua Tr. 13</td>
<td>General, Host searching</td>
<td>11.iii.03</td>
<td>4910'</td>
<td>19°52.575'N</td>
<td>155°17.578'W</td>
<td>Ohia leaf litter</td>
</tr>
<tr>
<td>18</td>
<td>Maulua Tr. 13</td>
<td>General, Host searching</td>
<td>11.iii.03</td>
<td>4700'</td>
<td>19°52.605'N</td>
<td>155°17.102'W</td>
<td>Under dead Ohia bark.</td>
</tr>
<tr>
<td>19</td>
<td>Maulua Tr. 13</td>
<td>Leaf litter sieve</td>
<td>11.iii.03</td>
<td>4700'</td>
<td>19°52.605'N</td>
<td>155°17.102'W</td>
<td>Ohia leaf litter.</td>
</tr>
<tr>
<td>20</td>
<td>Maulua Tr. 13</td>
<td>Sieving</td>
<td>11.iii.03</td>
<td>4700'</td>
<td>19°52.605'N</td>
<td>155°17.102'W</td>
<td>Ohia leaf litter nr. Large sedges.</td>
</tr>
<tr>
<td>No.</td>
<td>Transect/Location</td>
<td>Method employed</td>
<td>Date</td>
<td>Elevation</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Habitat/Vegetation</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>21</td>
<td>Maulua Tr. 13</td>
<td>General, Host searching</td>
<td>11.iii.03</td>
<td>4700'</td>
<td>19°52.605’N</td>
<td>155°17.102’W</td>
<td>Moss on tree trunks.</td>
</tr>
<tr>
<td>22</td>
<td>Maulua Tr. 13</td>
<td>General, host searching</td>
<td>11.iii.03</td>
<td>4640'</td>
<td>19°52.624’N</td>
<td>155°16.897’W</td>
<td>Lg. leaf Myrsine, boggy w/lg. Sedges, ferns.</td>
</tr>
<tr>
<td>23</td>
<td>Maulua Tr. 13</td>
<td>Sieving</td>
<td>11.iii.03</td>
<td>4640'</td>
<td>19°52.624’N</td>
<td>155°16.897’W</td>
<td>Lg. leaf Myrsine, boggy w/lg. Sedges, ferns.</td>
</tr>
<tr>
<td>24</td>
<td>Maulua Tr. 13</td>
<td>Sieving</td>
<td>11.iii.03</td>
<td>4640'</td>
<td>19°52.624’N</td>
<td>155°16.897’W</td>
<td>Mosses.</td>
</tr>
<tr>
<td>25</td>
<td>Maulua Tr. 13</td>
<td>Leaf litter sieve</td>
<td>11.iii.03</td>
<td>4910'</td>
<td>19°52.575’N</td>
<td>155°17.578’W</td>
<td>Ohia leaf litter.</td>
</tr>
<tr>
<td>26</td>
<td>Pua Akala Tr.</td>
<td>General host searching</td>
<td>13.iii.03</td>
<td>6240'</td>
<td>19°47.484’N</td>
<td>155°19.647’W</td>
<td>Ohia, Koa, Akala, Ferns, grasses.</td>
</tr>
<tr>
<td>27</td>
<td>Pua Akala Tr.</td>
<td>General, host searching</td>
<td>13.iii.03</td>
<td>6080'</td>
<td>19°47.364’N</td>
<td>155°18.367’W</td>
<td>Under bark of dead Koa branch.</td>
</tr>
<tr>
<td>28</td>
<td>Pua Akala Tr.</td>
<td>Sieving</td>
<td>13.iii.03</td>
<td>6080'</td>
<td>19°47.364’N</td>
<td>155°18.367’W</td>
<td>Fern leaf litter with Ohia and Akala over story.</td>
</tr>
<tr>
<td>29</td>
<td>Pua Akala Tr.</td>
<td>Sieving</td>
<td>13.iii.03</td>
<td>6080'</td>
<td>19°47.364’N</td>
<td>155°18.367’W</td>
<td>Koa and fern leaf litter.</td>
</tr>
<tr>
<td>30</td>
<td>Pua Akala Tr.</td>
<td>General host searching</td>
<td>13.iii.03</td>
<td>6080'</td>
<td>19°47.364’N</td>
<td>155°18.367’W</td>
<td>Ohia, Koa, Akala, Ferns, grasses.</td>
</tr>
<tr>
<td>31</td>
<td>Pua Akala Tr.</td>
<td>General, host searching</td>
<td>13.iii.03</td>
<td>6070'</td>
<td>19°47.364’N</td>
<td>155°19.355’W</td>
<td>“Big Koa”, under bark of dead branches.</td>
</tr>
<tr>
<td>32</td>
<td>Pua Akala Tr.</td>
<td>Sieving</td>
<td>13.iii.03</td>
<td>5300'</td>
<td>19°47.064’N</td>
<td>155°17.905’W</td>
<td>Ohia and moss litter.</td>
</tr>
<tr>
<td>33</td>
<td>Pua Akala Tr.</td>
<td>General, Host searching</td>
<td>13.iii.03</td>
<td>5290'</td>
<td>19°47.067’N</td>
<td>155°17.885’W</td>
<td>Astelia leaf litter and roots.</td>
</tr>
<tr>
<td>34</td>
<td>Pua Akala Tr.</td>
<td>General, Host searching</td>
<td>13.iii.03</td>
<td>5290'</td>
<td>19°47.271’N</td>
<td>155°17.902’W</td>
<td>Leaf litter.</td>
</tr>
<tr>
<td>35</td>
<td>Pua Akala Tr.</td>
<td>General, Host searching</td>
<td>13.iii.03</td>
<td>5290'</td>
<td>19°47.271’N</td>
<td>155°17.902’W</td>
<td>Leaf litter, (Ohia ?).</td>
</tr>
<tr>
<td>36</td>
<td>Pua Akala Tr.</td>
<td>Sieving Ohia leaf litter.</td>
<td>10.iii.03</td>
<td>5460'</td>
<td>19°47.030’N</td>
<td>155°18.414’W</td>
<td>Ohia, Koa, Akala, Ferns, grasses.</td>
</tr>
<tr>
<td>37</td>
<td>Pua Akala Tr.</td>
<td>General host searching</td>
<td>10.iii.03</td>
<td>5470'</td>
<td>19°47.030’N</td>
<td>155°18.414’W</td>
<td>Ohia, Koa, Akala, Ferns, grasses.</td>
</tr>
<tr>
<td>40</td>
<td>Pua Akala Tr.</td>
<td>General, host searching</td>
<td>13.iii.03</td>
<td>5150'</td>
<td>19°47.035’N</td>
<td>155°17.645’W</td>
<td>Mossy base of large Ohia tree, under dead tree bark.</td>
</tr>
<tr>
<td>41</td>
<td>Pua Akala Tr.</td>
<td>Fog</td>
<td>13.iii.03</td>
<td>5160'</td>
<td>19°47.051’N</td>
<td>155°17.642’W</td>
<td>Mossy base of large Ohia tree.</td>
</tr>
<tr>
<td>42</td>
<td>Pua Akala Tr.</td>
<td>Fog</td>
<td>13.iii.03</td>
<td>5160'</td>
<td>19°47.067’N</td>
<td>155°17.643’W</td>
<td>Mossy base of large Ohia tree.</td>
</tr>
<tr>
<td>43</td>
<td>Pua Akala Tr.</td>
<td>General</td>
<td>13.iii.03</td>
<td>5160'</td>
<td>19°47.081’N</td>
<td>155°17.653’W</td>
<td>Under large Koa tree, leaf and soil litter.</td>
</tr>
<tr>
<td>44</td>
<td>Pua Akala Tr.</td>
<td>Seiving</td>
<td>13.iii.03</td>
<td>5160'</td>
<td>19°47.095’N</td>
<td>155°17.663’W</td>
<td>Fern litter</td>
</tr>
<tr>
<td>45</td>
<td>Pua Akala Tr.</td>
<td>Sieving</td>
<td>13.iii.03</td>
<td>5160'</td>
<td>19°47.068’N</td>
<td>155°17.666’W</td>
<td>Leaf litter under ferns.</td>
</tr>
<tr>
<td>No.</td>
<td>Transect/ Location</td>
<td>Method employed</td>
<td>Date</td>
<td>Elevation</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Habitat/Vegetation</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>----------------------------------</td>
<td>-------</td>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>32</td>
<td>Pua Akala/ Tr.1A; 6</td>
<td>2 fogs and host searches</td>
<td>2.x.02</td>
<td>5295’</td>
<td>19°47.074’N</td>
<td>155°17.885’W</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Chopper site</td>
<td>Fog 1</td>
<td>3.x.02</td>
<td>4190’</td>
<td>19°46.358’N</td>
<td>155°16.001’W</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Chopper site</td>
<td>Fog 1 & 2</td>
<td>3.x.02</td>
<td>4180’</td>
<td>19°46.347’N</td>
<td>155°15.992’W</td>
<td></td>
</tr>
<tr>
<td>37A</td>
<td>Chopper site</td>
<td>Fog & host search</td>
<td>3.x.04</td>
<td>4160’</td>
<td>19°46.304’N</td>
<td>155°15.947’W</td>
<td>Wet cliff above stream bank</td>
</tr>
<tr>
<td>37</td>
<td>Chopper site</td>
<td>Fog and host search</td>
<td>4.x.02</td>
<td>4225’</td>
<td>19°46.473’N</td>
<td>155°15.924’W</td>
<td>Cibotium fronds</td>
</tr>
<tr>
<td>11</td>
<td>Maulua Tr. 13</td>
<td>Malaise trap #2</td>
<td>6.x.02</td>
<td>5150’</td>
<td>19°52.229’N</td>
<td>155°16.987’W</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Maulua Tr. 13</td>
<td>Fog</td>
<td>6.x.02</td>
<td>4960’</td>
<td>19°52.373’N</td>
<td>155°17.705’W</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. List of native and introduced snails and slugs of the Island of Hawaii

This list follows Cowie et al. (1995a) and Cowie (1997). The known distribution of the species in the Hawaiian Islands follows the author of the species (in parenthesis); localities on the Island of Hawaii are listed when available. All remarks, except where noted otherwise, are from Cowie et al. (1995a). The species in bold are those found at the Hakalau Forest National Wildlife Refuge in this survey. For more localities on other islands and more details on the taxonomy, refer to Cowie et al. (1995). An asterisk (*) indicates species that potentially occur in the Refuge (Hadway, pers. comm.).

Abbreviations for the islands:
H Hawaii
K Kauai
Kah Kahoolawe
L Lanai
M Maui
Mo Molokai
N Niihau
O Oahu
HI Hawaiian Islands (no island was specified)

Family Neritidae (Remarks – both species below occur in freshwater (but perhaps not at the elevation of the Hakalau Forest NWR))
1. Neritina (Neripteron) vespertina Sowerby, 1849 (HI)
2. Neritina (Neritona) granosa Martens, 1869 (HI)

Family Helicinidae
3. Pleuropoma (Aphanoconia) sulculosa (Ancey, 1904) (H: “Olaa”)
4. Pleuropoma (Pleuropoma) bronniana (Philippi, 1847) (HI)
5. *Pleuropoma (Pleuropoma) laciniosa konaensis Neal, 1934 (H: “Puuwaawaa, Mawai, near Puu Henahena”)

Family Lymnaeidae
7. Fossaria viridis (Quoy & Gaimard, 1832) (N, K, O, Mo, M, H; introduced) (Remarks – this species is a major intermediate host of cattle liver flukes in the Hawaiian Islands, and is the subject of intensive efforts at biological control (Cowie, 1997))
8. Lymnaea (Pseudisidora) producta (Mighels, 1845) (N, K, O, ?H)
9. Lymnaea (Pseudisidora) rubella Lea, 1841 (N, K, O, Mo, M, H)

Family Ancylidae (Remarks – freshwater limpets)
10. Ferrisia (Pettancylus) sharpi (Sykes, 1900) (K, O, H, ?introduced)
Family Thiaridae
11. *Tarebia granifera* (Lamarck, 1816) (K, O, Mo, M, H; introduced)
12. *Tarebia lateritia* (Lea & Lea, 1851) (HI; introduced)
13. *Thiara indefinita* (Lea & Lea, 1851) (K, O, Mo, M, H; introduced)
14. *Thiara verrauiana* (Lea, 1856) (HI; introduced)

Family Viviparidae
15. *Cipangopaludina chinensis* (Griffith & Pidgeon, 1834) (K, O, Mo, M, H; introduced)

Family Achatinellidae
16. *Auriculella armata* (Mighels, 1845) (H)
17. *Auriculella chamissoi* (Pfeiffer, 1855) (O, H)
21. *Lamellidea (Lamellidea) peponum* (Gould, 1847) (O, M, H)
22. *Pacificella baldwini* (Ancey, 1889) (K, O, M, H)
24. *Partulina (Baldwinia) confusa* (Sykes, 1900) (H)
25. *Partulina (Baldwinia) horneri* (Baldwin, 1895) (H: “Hamakua”)
27. *Partulina (Baldwinia) horneri fuscospira* Pilsbry & Cooke, 1914 (H: “Above Kukuihaele”)
28. *Partulina (Baldwinia) horneri fuscozonata* Pilsbry & Cooke, 1914 (H)
29. *Partulina (Baldwinia) horneri kapuana* Gouveia & Gouveia, 1920 (H: “Waiahole, Kapua, South Kona, Hawaii: about one-half mile above Government Road”)
30. *Partulina (Baldwinia) horneri konana* Pilsbry & Cooke, 1914 (H: “North Kona at Honoula”)
32. *Partulina (Baldwinia) physa errans* Pilsbry & Cooke, 1913 (H: “Near Pahoa, Puna”)
40. *Tornatellaria trochoides* (Sykes, 1900) (Mo, L, H)
41. *Tornatellides* (*Tornatellides*) *compactus* (Sykes, 1900) (H: “Mauna Loa at 2000 feet”)
42. *Tornatellides* (*Tornatellides*) *confusus* (Sykes, 1900) (?K, H: “Hilo”)
43. *Tornatellides* (*Tornatellides*) *cyphostyla* (Ancey, 1904) (H: “Palihoukapapa, on the Hamakua slope of Mauna-Kea, Kawaii [= Hawaii], at an elevation of 4,000 feet”)
44. *Tornatellides* (*Tornatellides*) *forbesi nanus* Cooke & Pilsbry in Pilsbry & Cooke, 1915 (H: “Reed’s Island”)
45. *Tornatellides* (*Tornatellides*) *kilauea* Pilsbry & Cooke, 1915 (H: “crest of Kilauea crater, about half a mile south of the Volcano House”)
47. *Tornatellides* (*Tornatellides*) *macromphala* (K, O, Mo, M, L, Kah, H)
51. *Tornatellides* (*Tornatellides*) *terebra* (Ancey, 1903) (Mo, M, L, H)
52. *Tornatellides* (*Tornatellides*) *vitreus* (Dohrn, 1863) (?HI)
53. *Tornatellides* (*Waimea*) *rudicostatus* (Ancey, 1904) (H: “Palihoukapapa, on the Hamakua slope of Mauna-Kea, Kawaii [= Hawaii], at an elevation of 4,000 feet”)

Tornatellides *sp.* Collected at the Hakalau Forest NWR in this survey.

Family Amastridae

54. *Amastra* (*Amastra*) *lineolata* (Newcomb, 1853) (?M, ?H)
55. *Amastra* (*Amastrella*) *conica* Baldwin, 1906 (H: “Hamakua”)
56. *Amastra* (*Amastrella*) *conica gentilis* Cooke, 1917 (H: “Waikii station, land of Waikoloa about 6,000 feet elevation”)
57. *Amastra* (*Amastrella*) *conica gyrans* Hyatt in Hyatt & Pilsbry, 1911 (H)
58. *Amastra* (*Amastrella*) *conica kohalensis* Hyatt & Pilsbry, 1911 (H: “Hokala Mts.”)
59. *Amastra* (*Amastrella*) *flavescens* (Newcomb, 1854) (H)
60. *Amastra* (*Amastrella*) *flavescens emortua* Cooke, 1917 (H: “Huehue in the district of North Kona, on the northwestern slopes of Hualalai about 1,700 feet elevation”)
61. *Amastra* (*Amastrella*) *flavescens saxicola* Baldwin, 1903 (H: “Kau”)
62. *Amastra* (*Amastrella*) *fossilis* Baldwin, 1903 (H: “Palihoukapapa, on the Hamakua slope of Maunakea, at an elevation of 4,000 feet”)
63. *Amastra* (*Amastrella*) *fragosa* Cooke, 1917 (H: “Kapulehu, about three miles north of Huehue and nearly the same elevation”)
64. *Amastra* (*Amastrella*) *hawaiensis* Hyatt & Pilsbry, 1911 (H: “Waimanu, in the northeastern part of the island”)
65. *Amastra* (*Amastrella*) *henshawi* Baldwin, 1903 (H: “South Kona”)
66. *Amastra* (*Amastrella*) *melanosis* (Newcomb, 1854) (H) (Remarks: According to Pilsbry & Cooke (1915a: 49), Newcomb received his shells from Baldwin,
labeled “Hamakua”, but Newcomb’s labels says “Mauna Loa”. Verification of the exact type locality requires further research (Cowie et al., 1995)

67. *Amastra* (*Amastrella*) *melanosis kauensis* Pilsbry & Cooke, 1915 (H: “Waiohinu, Kau, near the southern end of Hawaii”)

68. *Amastra* (*Amastrella*) *pagodula* Cooke, 1917 (H: “Huehue about 1,800 feet elevation”)

69. *Amastra* (*Amastrella*) *senilis* Baldwin, 1903 (H: “Palihoukapapa on the Hamakua slope of Maunakea, at an elevation of 4,000 feet)

70. *Amastra* (*Cyclamastra*) *extincta* (Pfeiffer, 1856) (?K, ?O, ?H)

71. *Amastra* (*Cyclamastra*) *modicella* Hyatt & Pilsbry, 1911 (H: “Waikii station, in the land of Waikoloa, about 6,000 feet elevation”)

72. *Amastra* (*Cyclamastra*) *ultima* Pilsbry & Cooke, 1914 (H: “Kahuku, Kau, under lava slabs on a nearly naked flow”)

73. *Amastra* (*Cyclamastra*) *umbilicata pluscula* Cooke, 1917 (H: “Kapulehu, in the district of North Kona, about 18,000 feet elevation [elevation incorrect; no point on the island of Hawaii is that high]

74. *Amastra* (*Heteramastra*) *sinistrorsa* Baldwin, 1906 (H: “Hamakua”)

75. *Amastra* [Incertae sedis in the genus *Amastra*] *amicta* Smith in Gulick & Smith, 1873 (HI)

76. *Amastra* [Incertae sedis in the genus *Amastra*] *luteola* Férussac in Quoy & Gaimard, 1825 (?H – “probable qu’elle vient des îles Mariannes”) [Remarks: Newcomb (1858: 308) and Hyatt & Pilsbry (1911b: 138) considered the Marianas locality incorrect]

77. *Leptachatina* (*Angulidens*) *anceyana* Cooke in Hyatt & Pilsbry, 1910 (H: “Mana”)

78. *Leptachatina* (*Leptachatina*) *arborea* Sykes, 1900 (H: “Kona at 4000 feet; Olaa, Hilo”)

79. *Leptachatina* (*Leptachatina*) *defuncta* Cooke in Hyatt & Pilsbry, 1910 (H: “Mana”)

80. *Leptachatina* (*Leptachatina*) *imitatrix* Sykes, 1900 (H: “Mauna Loa at 4000 feet”)

82. *Leptachatina* (*Leptachatina*) *konaensis* Sykes, 1900 (H: “Mauna Loa at 4000 feet”)

83. *Leptachatina* (*Leptachatina*) *lepida* Cooke in Hyatt & Pilsbry, 1910 (H: “Mana”)

84. *Leptachatina* (*Leptachatina*) *saccula* (Hartman, 1888) (HI)

85. *Leptachatina* (*Leptachatina*) *simplex* (Pease, 1869) (H)

86. *Leptachatina* (*Leptachatina*) *tenuicostata* (Pease, 1869) (H)

87. *Leptachatina* (*Thaanumia*) *henshawi* Sykes, 1903 (H: “Bucholtz, Kona, 1,800 feet”)

88. *Planamastra* *peaseana* Pilsbry in Hyatt & Pilsbry, 1911 (HI)

Family Pupillidae

89. *Columella* *olaaensis* Pilsbry, 1926 (H: “Olaa”)

90. *Columella* *sharpi* Pilsbry & Cooke, 1906 (H: “Crest of the Kilauea crater, about a half mile south of the hotel”)

Hakalau Snail Survey
91. *Gastrocopta* (*Gastrocopta*) *nacca* (Gould, 1862) (O, H; introduced)
92. *Gastrocopta* (*Gastrocopta*) *pediculus* (Shuttleworth, 1852) (H; introduced)
94. *Gastrocopta* (*Gastrocopta*) *pediculus* (Shuttleworth, 1852) (H; introduced)
96. *Lyropupa* (*Lyropupa*) *clathratula* Ancey, 1904 (H: “Olaa”)
97. *Lyropupa* (*Lyropupa*) *prisca* Ancey, 1904 (H: “Palihoukapapa, on the Hamakua slope of Mauna Kea, Kawaii [= Hawaii], at an elevation of 4,000 feet”) [?error = Mana (Pilsbry & Cooke, 1920: 244)]
98. *Lyropupa* (*Lyropupa*) *striatula* (Pease, 1871) (H)
102. *Nesopupa* (*Infranesopupa*) *forbesi* Cooke & Pilsbry in Pilsbry & Cooke, 1920 (H: “Huumula … in a large kipuka in the 1855 Flow, about half way between Halealoha and Ainahou, at about 5,000 ft. elevation”)
104. *Nesopupa* (*Limbatipupa*) *newcombi* (Pfeiffer, 1853) (O, Mo, L, H)
106. *Nesopupa* (*Limbatipupa*) *newcombi seminulum* Boettger, 1881 (K, O, Mo, M, H)
110. *Nesopupa* (*Nesopilla*) *bacca* (Pease, 1871) (H: “Kalapana”)
111. *Nesopupa* (*Nesopilla*) *baldwini* Ancey, 1904 (Mo, M, L, H)
112. *Nesopupa* (*Nesopilla*) *baldwini centralis* Ancey, 1904 (H: “Olaa”)
114. *Prosenopupa* (*Edentulopupa*) *admodesta* (Mighels, 1845) (K, O, Mo, H)

124. *Prosenopupa* (*Sericipupa*) *sericata* Cooke & Pilsbry *in* Pilsbry, 1920 (H: “Piihonua, (a hill) in the flow of 1855, about 5,000 feet elevation”)

125. *Pupisoma orcula* (Benson, 1850) (K, O, Mo, M, H; introduced)

Family Spiraxidae

126. *Euglandina rosea* (Féruassac, 1821) (K, O, Mo, M, H; introduced) (Remarks – This is the most significant of the predatory snail introduced deliberately during the 1950’s as potential biological control agents against *Achatina fulica*. While there are no convincing evidence that *E. rosea* is successful in controlling *A. fulica*, the latter has declined for unknown but probably unrelated reasons. There is, however, ample evidence of its effects on the native Hawaiian land snail faunas (Cowie, 1997))

Family Streptaxidae

127. *Gonaxis quadrilateralis* (Preston, 1910) (K, O, M, H; introduced) (Remarks – one of the many predatory snails introduced into the wild as potential biological control agent of *Achatina fulica*. It has become established but apparently not widespread or abundant (Cowie, 1997))

128. *Gulella bicolor* (Hutton, 1834) (O, H; introduced) (Remarks – First recorded in 1940, possibly due to an accidental introduction. Subsequently deliberately introduced for control of *Achatina fulica* and *Subulina octona* but apparently not established. This species has been introduced widely and is now circum-tropical in distribution (Cowie, 1997))

Family Ferussaciidae (Remarks – The Ferussaciidae are not native to the Hawaiian Islands, but *C. baldwini* has been described from Hawaiian material)

129. *Cecilioides aperta* (Swainson, 1840) (O, H; introduced)

130. *Cecilioides baldwini* (Ancey, 1892) (K, O, M, H; introduced) (Remarks - It is probably a synonym of the widely distributed synanthropic *Cecilioides aperta* Swainson, 1840 (Cowie et al, 1995))

Family Subulinidae

131. *Allopeas clavulinum* (Potiez & Michaud, 1838) (H; introduced)

132. *Allopeas gracile* (Hutton, 1834) (N, K, O, Mo, M, H; introduced) (Remarks – probably introduced by Polynesian travelers prior to the arrival of westerners in the Hawaiian Islands (Christensen & Kirch, 1986 I Cowie, 1997))
133. *Allopeas prestoni hawaiiense* (Sykes, 1904) (K, O, Mo, M, H - Hawaii: “Kawaiola, Mauna Loa at 1,500 feet … Hilo”; introduced)

134. *Opeas hannense* (Rang, 1831) (N, K, O, H; introduced)

135. *Opeas mauritianum* (Pfeiffer, 1854) (O, M, H; introduced)

136. *Opeas mauritianum prestoni* Sykes, 1898 (H; introduced) (Remarks – This is probably synonymous with *mauritianum* s.s. but has not been formally synonymized, following Pilsbry (1906-1907) and pending further research (Cowie, 1997))

137. *Opeas opella* Pilsbry & Vanatta, 1906 (K, O, Mo, M, H: “Hilo”; introduced)

138. *Paropeas achatinaceum* (Pfeiffer, 1846) (K, O, Mo, M, H; introduced)

139. *Subulina octona* (Bruguière, [1789]-1792) (K, O, Mo, H, Midway; introduced) (Remarks – one of the most common snails of disturbed (especially urban and suburban) areas in the Hawaiian Islands; reported as prey of *Gonaxis* spp. (Cowie, 1997))

Family Veronicellidae

140. *Laevicaulis alte* (Férussac, 1822) (O, Mo, H, Midway; introduced) (Remarks – the well-known black slug (Cowie, 1997))

141. *Vaginula plebeia* Fischer, 1868 (O, H; introduced) (Remarks – the common brown slug (Cowie, 1997))

Family Achatinidae

142. *Achatina fulica* Bowdich, 1822 (K, O, Mo, L, M, H; introduced) (Remarks – This species was widely introduced in the humid tropics, and is often an agricultural pest. In Hawaii, it was first recorded in 1936, and several predatory snails, notably *Euglandina rosea* (Férussac), were introduced as attempts at biological control. *A. fulica* is now declining in the Hawaiian Islands, but there is no convincing evidence that it is the result of predation (Cowie, 1997))

Family Arionidae

143. *Arion intermedius* Normand, 1852 (H; introduced) (Remarks – This species was found in most sites sampled in the Hakalau Forest NWR, suggesting that the species is established and more widely distributed than previously (Cowie, 1997, 1998) believed)

Family Bradybaenidae

144. *Bradybaena similaris* (Rang, 1831) (K, O, Mo, M, L, H, Midway; introduced) (Remarks – This species was widely introduced in tropical and subtropical regions, including many Pacific islands. This is one of the most widespread of the introduced species in the Hawaiian Islands (Cowie, 1997))

Family Helicidae

145. *Helix aspersa* Müller, 1774 (K, O, M, H; introduced) (Remarks – This species has been introduced and become established in the Hawaiian Islands. Although it has not achieved a wide distribution in the islands, nor become a serious agricultural pest, there are many records of *H. aspersa* in Hawaii, and the State Plant
Quarantine officials intercept it every so often. Cowie (1997) notes that this species is of temperate origin, and it may be restricted to high elevations in the Hawaiian Islands. This species is highly prized and cultivated by Europeans as an edible snail (the renown *escargot*, or *Petit-Gris*).

Family Endodontidae

<table>
<thead>
<tr>
<th>Number</th>
<th>Species Name</th>
<th>Location Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>146</td>
<td>Cookeconcha elisae (Ancey, 1889) (?HI)</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Cookeconcha henshawi (Ancey, 1904) (H: “Palihoukapapa, on the Hamakua slope of Mauna Kea, Kawaii [= Hawaii], at an elevation of 4,000 feet”)</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>Cookeconcha lanaiensis (Sykes, 1896) (?K, L, ?H)</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>Cookeconcha nuda (Ancey, 1899) (“Olaa, Central Hawaii”)</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Cookeconcha paucilamellata (Ancey, 1904) (H: “Palihoukapapa, on the Hamakua slope of Mauna Kea, Kawaii [= Hawaii], at an elevation of 4,000 feet”)</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Cookeconcha thaumum (Pilsbry & Vanatta, 1905) (Mo, M, H – Hawaii: “Kaiwiki, near Hilo”)</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>Cookeconcha thwingi (Ancey, 1904) (H: “in an extinct crater on the Kona coast”)</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Nesophila baldwini albina (Ancey, 1889) (HI)</td>
<td></td>
</tr>
</tbody>
</table>

Family Punctidae

<table>
<thead>
<tr>
<th>Number</th>
<th>Species Name</th>
<th>Location Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>154</td>
<td>Punctum horneri (Ancey, 1904) (H, O – Hawaii: “Palihoukapapa, on the Hamakua slope of Mauna Kea, Kawaii [= Hawaii], at an elevation of 4,000 feet”)</td>
<td></td>
</tr>
</tbody>
</table>

Family Succinidae

<table>
<thead>
<tr>
<th>Number</th>
<th>Species Name</th>
<th>Location Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>Catinella rotundata (Gould, 1846) (O, Mo, H)</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Succinea (Succinea) approximata Sowerby in Reeve & Sowerby, 1872</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Succinea (Succinea) aurulenta Ancey, 1889 (H)</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Succinea (Succinea) bicolorata Ancey, 1899 (H: “Waimea”)</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Succinea (Succinea) casta henshawi Ancey, 1904 (H: “Olaa, Hawaii, 2,425 ped. Supra mare”)</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Succinea (Succinea) casta orophila Ancey, 1904 (H: “Kaiwiki, Hawaii, 2,500 ped. S.m. [= 2,500 feet above sea level]”)</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Succinea (Succinea) cephula Gould, 1846 (O, Mo, H) (Remarks – collected at the Hakalau Forest NWR during the arthropod survey at Pua Akala tract at about 4200 ft. elevation)</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Succinea (Succinea) garrettiana Ancey, 1899 (H: “Rainbow Falls, Hilo”)</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>Succinea (Succinea) hiba Henshaw, 1904 (H: “Mana, Hamakua”)</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Succinea (Succinea) inconspicua Ancey, 1899 (H: “Waimea”)</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Succinea (Succinea) konaensis Sykes, 1897 (H: “Mt. Kona, Hawaii, at 4,000 feet”)</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Succinea (Succinea) kuhnsi Ancey, 1904 (H: “Kaiwicki [= Kaiwiki], Hilo”)</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>Succinea (Succinea) lumbalis Gould, 1846 (K, H)</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>Succinea (Succinea) maxima Henshaw, 1904 (H: “Mana, Hamakua”)</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Succinea (Succinea) mirabilis Henshaw, 1904 (H: “Palihoukapapa, Hamakua”)</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Succinea (Succinea) newcombiana Garrett, 1857 (H: “District of Waimea”)</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>Succinea (Succinea) pristina Henshaw, 1904 (H: “Mana, Hamakua”)</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>Succinea (Succinea) protracta Sykes, 1900 (H: “Kau”)</td>
<td></td>
</tr>
</tbody>
</table>
173. **Succinea (Succinea) punctata** Pfeiffer, 1855 (?H)

175. **Succinea (Succinea) tahitiensis** Pfeiffer, 1847 (HI) (remarks – Caum (1928: 60) listed *S. tahitiensis* as a Hawaiian species)

176. *Succinea (Succinea) tenerrima* Ancey, 1904 (H: “Kawaiki, Hawaii, alt. 2500-2600 ped. s.m. [= feet above sea level”)

177. **Succinea (Succinea) thaanumi** Ancey, 1899 (H: “Olaa”)

Family Helicarionidae

181. **Euconulus (Chetosyna) thurstuni** Baker, 1941 (H: “North Kona … Puu Huluhulu (which?)”) (Remarks – more than one location on the Island of Hawai‘i bears the name “Puu Huluhulu”; Baker was uncertain which Puu Huluhulu was the source of his specimens)

182. **Euconulus (Nesoconulus) gaetanoi** (Pilsbry & Vanatta, 1908) (H: “Palihoukapapa”)

183. **Euconulus (Nesoconulus) gaetanoi vivens** Baker, 1941 (H: “South Hilo … large *kipuka* between Hilo and Kilauea trails from Humuula, alt. About 5,000 ft., 1855 flow”)

184. **Euconulus (Nesoconulus) konaensis** (Sykes, 1897) (H: “Mt. Kona, Hawaii, at 3,000 feet”)

185. **Euconulus (Nesoconulus) thaanumi** (Ancey, 1904) (H: “Olaa”)

186. **Euconulus (Pelucidomus) lubricellus** (Ancey, 1904) (H: “Olaa”)

187. **Hiona (Hionella) rufobrunnea** (Ancey, 1904) (H: “Olaa”)

188. **Philonesia (Aa) gouveiana** Baker, 1940 (H: “South Kona … alt. 6,000 ft., Honomalino”)

189. **Philonesia (Haleakala) turgida diducta** Baker, 1940 (K, O, Mo, M, L, H)

190. **Philonesia (Hiloaa) hiloi** Baker, 1940 (H: “South Hilo … 4 miles out along Olaa road from Hilo”)

191. *Philonesia (Hiloaa) piihonuane* Baker, 1940 (H: “South Hilo … *kipuka* 4, Pihiouana”)

192. *Philonesia (Philonesia) cicercula* (Gould, 1846) (H: “Mountains of Hawaii”)

193. **Philonesia (Philonesia) cicercula boettgeriana** (Ancey, 1889) (H: “Kona”)

194. **Philonesia (Waihoua) kaliella** Baker, 1940 (H: “North Kona … inland of old branding pen along trail, Waihou, Puu Waawaa”)

Family Zonitidae

195. **Hawaiia minuscula** (Binney, 1841) (K, O, Mo, L, M, H, Midway; introduced) (Remarks – despite the genus name, which was established for the junior synonym *kawaiensis* Reeve, this species is not native to Hawai‘i, but has been introduced since western contact (Cowie, 1997))

Hakalau Snail Survey 24
197. *Oxychilus alliarius* (Miller, 1822) (K, Mo, M, H; introduced) (Remarks – The “garlic snail”, so called because of the strong garlic smell it produced when handled (Cowie, 1997), was the widely distributed in most sites surveyed at the Hakalau Forest NWR. It was locally abundant, and it has been suggested as a potential competitor of native species such as the endangered bird, Puuoli (Birding Hawaii website, 2003))

198. *Striatura (Pseudohyalina) meniscus* (Ancey, 1904) (H: “Palihoukapapa, on the Hamakua slope of Mauna Kea, Kawaii [= Hawaii], at an elevation of 4,000 feet”)

199. *Vitrina tenella* Gould, 1846 (K, M, H)

200. *Zonitoides arboreus* (Say, 1819) (O, M, H; introduced)

Family Milacidae

201. *Milax gagates* (Draparnaud, 1801) (M, H; introduced)

Family Agriolimacidae (Remarks – We follow Barker (1999), who recognizes the family Agriolimacidae as separate from Limacidae)

203. *Deroceras laeve* (Müller, 1774) (K, O, M, H; introduced) (Remarks – this species was found in the Hakalau Forest NWR in the present survey)

204. *Deroceras globosum* (Collinge, 1896) (H: “Mauna Loa, Hawaii”; introduced)

205. *Deroceras reticulatum* (Müller, 1774) (K, H; introduced) (Remarks – the name *reticulatum* may have been used to refer to *laeve* Müller, and vice-versa. This species is frequently intercepted by State Plant Quarantine officials (Cowie, 1997))

Family Limacidae

206. *Limax maximus* Linnaeus, 1758 (O, M, H; introduced) (Remarks – The “leopard slug”, *L. maximus*, was found in the Hakalau Forest NWR in the present survey)

207. *Limax sandwicensis* Souleyet, 1852 (HI; introduced)

208. *Limax tenellus* Müller, 1774 (HI; introduced)
Figure 1. Hakalau Survey Project Area
Figure 2. Map of the Maulua tract showing snail collection sites.
Figure 3. Map of the Pua Akala tract showing snail collection sites
Figure 4. Map of the Hakalau tract showing snail collection sites
PART 2

Survey of the terrestrial arthropods (insects and their relatives) of the Hakalau Forest National Wildlife Refuge, Island of Hawaii

Francis G. Howarth, David Preston, and Myra McShane
Hawaii Biological Survey, Bishop Museum
Honolulu, Hawaii 96817

Introduction

The terrestrial arthropod fauna of the Hawaiian Islands totals 9,897 species, of which 5,732 are endemic, 101 are indigenous (i.e., occur naturally in the Hawaiian Islands but also native elsewhere), and 3,432 are non-native; the remainder (631) are of unknown status (Nishida, 2002). The majority are insects, with 5,449 native and 2,697 non-native species recorded (Nishida, 2002). Over 1,700 species of native insects have been recorded from the Island of Hawaii (Howarth et al., 1995). Several hundred more species of other, non-insect native arthropods plus non-native species brings the total arthropod fauna of the island to well over 2,000. Populations of many native species have certainly undergone precipitous declines in recent years. The causes of the declines include habitat destruction, loss of host species, and invasions by introduced species (Howarth & Ramsay, 1991).

The status of most species is unknown—surveying for such a large number of species is a daunting task, but knowledge of the distribution and status of these arthropod species is of primary importance in managing natural areas such as the Hakalau NWR. For example, historical evidence and preliminary studies have suggested that food resources, especially invertebrates, limit the populations and distributions of native Hawaiian birds (Loope et al., 2001). Thus many previous ecological studies on invertebrates at Hakalau FNWR have focused on invertebrates as a prey resource for native birds (Peck, 1993; Fretz, 1996, 2000). Because these studies were limited by a lack of basic knowledge of what invertebrate species occurred in the Refuge, they categorized the invertebrates into only broad groups.

Preliminary work on the distribution of invasive yellowjacket wasps has also been undertaken in the refuge (D. Foote, personal communication), and a few recent revisions of taxonomic groups have included material from the Refuge (e.g., Gillespie 1991). Also, a few preliminary surveys have been done [e.g., carabid beetles (J. Liebherr, unpublished) and native damselflies (D. Polhemus, unpublished)]. However, no broad-based invertebrate surveys generating species-level inventories have been undertaken, yet such surveys are the only way to generate the necessary baseline data for understanding the overall role of invertebrates in the Refuge and for evaluating the conservation status of “species of concern”.
The purposes of this study were two-fold: (1) to create a list of arthropod species, which are thought likely to occur within the Refuge that are potentially at risk of extinction or that could serve as indicator taxa for the health of the ecosystems within the Refuge; and (2) to conduct a baseline survey of the arthropods within the Refuge, focusing especially on species of concern.

Methods

Taxonomic lists of invertebrate species potentially occurring in the Refuge

Using relevant literature and specimen data contained in collections of the Hawaii Biological Survey (Bishop Museum), selected native arthropod species were evaluated in terms of whether their historic range encompassed the Refuge. The arthropod fauna of Hawaii Island (over 2,000 species) is too diverse to permit a comprehensive evaluation of all species at this time; therefore, only taxonomic groups containing species of concern or having the potential to serve as indicator taxa were evaluated.

Biological Survey

Three collecting trips each of about six days duration and involving three entomologists were conducted during 2002: one in March, one in July, and one in October. All field trips were scheduled the week before a new moon as a dark evening sky makes night collecting much more productive. An additional field trip in March 2003 focused on the mollusks (see part 1), but included some arthropod collecting.

Arthropod sampling was conducted primarily along two transects within the refuge: one transect was along an elevational gradient within the Pua Akala Tract and approximately coincided with the bird census Transect 1A. The other transect followed a similar elevational gradient along Transect 13 in the Maulua Tract. Arthropods were sampled at specific sites along each transect, with additional samples for specific taxa taken at suitable sites (e.g., significant host plants and damselfly breeding sites) between the main stations. Specific sampling sites were chosen to ensure that each of the accessible major vegetation zones within the reserve was sampled along each transect. Additional collecting was done in the vicinity of the University of Hawaii Hakalau Forest Biological Field Station in the Hakalau Tract. As part of the in-kind contribution from the Smithsonian Institution, a helicopter trip was arranged for a two-day collecting trip to the usually inaccessible bog habitats at mid-elevation. The general locations of the transects and 53 principal sites collecting sites are listed in Table 1 and illustrated in Figure 1.

Collecting Methods

Mercury vapor light (MV). Two night-time collections were made on each transect using a MV (mercury vapor) bulb shining on a white sheet. An additional sample was taken at the mid-elevation bog site. The locations are shown on Figures 2, 3, and 4. Arthropods attracted to the sheet were collected by hand. This is the standard method for obtaining specimens of moths and certain other nocturnal arthropods that either require special handling or are not otherwise commonly found.
Malaise traps. Malaise traps are large open-walled tent-like structures with baffles made of fine netting and about six feet high and eight feet long. They are stretched across suspected insect flyways. The traps act as interceptors; i.e., dispersing insects entering the open tent are guided into a collecting jar by the side and top panels. Two traps were set near the upper boundary of the ohia forest: one on Transect 1A in the Pua Akala Tract and the other on Transect 13 in the Maulua Tract. These were left in place from February to October 2002 and serviced about once every four weeks. The locations of these traps is shown on Figures 2 and 3.

Host searches and general collecting. Substrates and plant hosts were visually inspected for arthropods especially in conjunction with other survey methods or while walking between sites. An insect sweep net was used to capture specimens. Foliage was also sampled with a beating sheet, which is a 3X3-foot square of muslin stretched tight on a wooden frame. The sheet is held directly under foliage, like an umbrella, and the foliage shaken. Dislodged arthropods were collected from the sheet. The locations are shown of Figures 1, 2, 3 and 4.

Lindgren funnels. These special beetle traps consist of a set of about eight plastic funnels about 10 inches in diameter fastened to nest about one inch apart. The bottom funnel empties into a collecting jar. One trap was hung next to a tree trunk near each Malaise trap and left in place for circa three months. The locations are shown on Figures 2 and 3.

Fogging. Timed fogging samples were conducted at selected stations. Each sample involved spreading a 2 m x 2 m white plastic sheet under the most likely productive microhabitat in the vicinity of each sampling station, usually a mossy log or wall of thick vegetation, and fogging the substrate over the sheet with a quick knockdown biodegradable pesticide (pyrethrum). The arthropods of interest that fell to the sheet during 45 minutes were collected. Sample locations are shown on Figures 3, 4 and 5.

Gasoline-powered aspirator. These powerful vacuum pumps are often efficient for collecting a range of arthropods often missed by other means. However, attempts to use a portable gas-powered device at the Refuge gave unsatisfactory results because of the wet conditions.

Laboratory work
The collected specimens were returned to Bishop Museum and sorted to separate each morphologically similar form (usually species), and representative specimens of each morpho-species in selected taxa were appropriately mounted and labeled for identification, using standard entomological techniques. Names and status follow Nishida (1997 and 2002). Because of the huge amount of material collected by the techniques adopted, priority was given to identifying the species thought to be sensitive species or species of concern. Voucher specimens are deposited in the Hawaii Biological Survey entomology collections at the Bishop Museum. Where appropriate, duplicate voucher specimens were retained by the collaborating specialist who assisted with the determination.
RESULTS

Rare species potentially occurring in the Refuge
A search of the Hawaii Biological Survey collections and databases at Bishop Museum for records of species occurring within the Refuge was beyond the scope of this study, except for confirming identifications and assessing the relative rarity of the species captured. To plan the survey, an annotated list of taxonomic groups likely to be encountered and also likely to serve as indicators of the health of the ecosystem was prepared (Table 2).

Endangered species. Only one officially endangered arthropod [Blackburn’s sphinx moth, *Manduca blackburni* (Butler, 1880)] occurs on Hawai‘i Island. However, it is a denizen of drier habitats, and although potential host plants are found within Hakalau FNWR, the moth is not expected to occur there. The USFWS currently recognizes eight additional proposed or candidate endangered arthropod species on Hawaii Island (Table 3), some of which are expected to occur in the Refuge. More than 100 species of concern (88 species plus an unspecified number of the 22 *Proterhinus* endemic to Hawaii Island) are also listed from the Island of Hawai‘i (Table 4). Not all of these species would be expected to occur at Hakalau, for example some of the cave species. However, the Refuge serves as an important haven for many of these and other rare species.

Biological Survey
Over 2,500 specimens were collected and curated, and about 50 species have been identified (Table 4). This represents less than 10% of the number of species expected to occur in the Refuge. Because of the time required and need to rely on systematic specialists who have the experience and expertise, many species remain to be identified. The list is dynamic and will grow as the current material is identified. The existence of the voucher collection and list of species will encourage ecologists and other researchers working in the Refuge to assist in expanding the list. The small number of species identified so far makes some generalizations difficult; however, a few conclusions can be made. These are elaborated below and concern the notable species collected, certain expected species that were conspicuously absent, and relative species diversity compared to other surveyed sites.

Notable species found:
DIPLOPODA: CAMBALIDAE
Nannolene species
Fifteen closely related endemic species of millipedes in the genus *Nannolene* have been described from the Hawaiian Islands, but none from Hawai‘i Island. However, several distinct surface and blind cave populations on Hawai‘i Island. Some surface populations of *Nannolene* have declined markedly in the past two decades, and finding these animals at several sites is noteworthy.
ODONATA: COENAGRIONIDAE

Megalagrion species

The 29 species of native Hawaiian damselflies all belong to the endemic genus *Megalagrion*. Nine species occur on Hawai‘i Island, but one of these, *M. nesiotes*, hasn’t been seen for decades. It was a denizen of rain forests near Kilauea and may survive in the Refuge. *M. pacificum*, which is a candidate endangered species, is a pool and stream breeder and may occur at the lowest elevations in the Refuge, as may the stream breeder, *M. nigrohamatum*, a SOC on Hawaii. The other, species of concern, *M. amaurodytum peles*, breeds in damp litter in axils of *Astelia* and *Freycinetia*. We found immatures in *Astelia* axils wherever we found suitable habitat.

COLEOPTERA: AGLYCYDERIDAE

Proterhinus species

Aglycyderids are small primitive weevils found almost exclusively on oceanic islands. Over 170 species, all in the genus *Proterhinus*, are endemic to the Hawaiian Islands. Twenty-two species are known from Hawai‘i Island, but many species remain to be discovered. Hawaiian species are twig-, stem-, and wood- borers, and a few are even leaf miners. Each species has a very narrow host range, but in concert the group attacks a wide range of woody plant species. One Hawai‘i Island species restricted to *Hibiscadelphus* is believed to be extinct, and surviving populations of the others are sensitive to extirpation, as their hosts become rarer. They are all flightless, and as their hosts become more scattered, they cannot survive. They were widespread on our transects but not common. Species identification is not currently possible. The use of fogging for collecting has greatly expanded our collection of these cryptic weevils.

COLEOPTERA: CERAMBYCIDAE

Plagithmysus vicinus species

There are about 140 species in the endemic genus of long-horned wood-borers in Hawaii. Most species are extremely host-specific, but in concert most woody plant groups in Hawaii are attacked. Thirteen species on Hawaii Island are considered species of concern, one of which, *P. vicinus*, was collected at Maulua. Some species remain common and along with the wood-boring moth *Thyrocoopa* species, are believed to be an important food resource for the Akiapola‘au.

COLEOPTERA: CURCULIONIDAE

Achalles species

There are 22 endemic Hawaiian species of *Achalles* weevils, five of which occur on Hawai‘i Island. They are small (2–3 mm long), cryptically colored weevils living on tree branches and leaf litter. Their camouflage is enhanced by fungi and algae that grow on large specialized scale-like spines on the weevils’ backs and elytra. They are flightless and sensitive to habitat disturbance and invading species, and all species have become rare in the past 100 years.

Oodemus species

These small (3–5 mm long) egg-shaped weevils characteristically have a metallic sheen. There are 64 known species, 13 of which occur on Hawai‘i Island. Populations have declined significantly during the past 30 years (Howarth unpublished).
LEPIDOPTERA: CRAMBIDAE

Omiodes species

Species of Concern

The 23 species of endemic *Omiodes* leaf rollers are unusual in including both native agricultural pests as well as locally endemic rare species. Ten Hawaii Island species are listed as species of concern. One of these, *O. pritchardii*, is restricted to *Pritchardia* palms and was thought to be endemic to the Stainback Highway. It was present at the lower elevation site in Pua Akala and not far from its host palms.

LEPIDOPTERA: GEOMETRIDAE

Progonostola cremnopus

Progonostola is an endemic genus. It is rarely collected, and the group is poorly known. *P. cremnopus* was collected at only one site.

Scotorythra species

This endemic inchworm genus contains 38 named species, of which 20 occur on Hawai‘i Island. The group is currently being reviewed, and some species will soon be considered for listing. Eight species were collected, which makes the Refuge an important area for the group. The larvae of some species are one of the most important food items of nestling and fledgling native forest birds (Perkins, 1913). Introduced parasites and predators have greatly reduced their numbers, which probably has reduced breeding success of some endangered birds.

DIPTERA: CALLIPHORIDAE

Dyscritomyia species

Twenty-five species are known in this endemic Hawaiian genus, 12 of which occur on Hawai‘i Island. These flies, related to the blue- and green-bottle flies, have declined precipitously in numbers of both species and individuals in recent years. The immature stages are carrion feeders and were no doubt an important component of Hawaiian ecosystems before the arrival of Europeans. Loss of their natural carrion hosts (especially land snails [Perkins, 1913]) and introduction of predators and parasites have probably led to some species becoming extinct. Adults feed on snail slime trails and other liquid protein foods. Some species have dispensed with a feeding larval stage; the female gives birth to a fully-grown larva that transforms to a pupa and adult without feeding. Native *Dyscritomyia* are now largely confined to high elevation wet habitats. Only one species was found during the survey.

Missing species

Because of the difficulties of sampling the great diversity of arthropods, not finding a species is not proof that it is not present. Many of the missing species would be found by continuing the survey. This is especially true for the cryptic species, those active during only certain times of the year, and those living in habitats (such as the canopy) where it was not possible to sample. Among the missing native taxa that should be found at the site with more sampling are the long-horned wood-boring beetles (*Plagithmysus*), click beetles (*Eopenthes*), long-nosed *Nesotochus* weevils, yellow-faced bees (*Hylaeus*) and potter wasps (*Odynerus*).
Some species may be absent because of the ravages of introduced species, for example, the stink bugs and shield bugs (Pentatomidae). *Coleotichus blackburniae*, the koa bug, is the largest and most conspicuous native true bug. It is nearly an inch long and iridescent blue, green, maroon, and yellow. Once common on koa and ‘a‘ali‘i on all of the main islands, it has become rare. The 14 native species of related predatory stink bugs in the genus *Oechalia* also declined at the same time, following the introduction, beginning in the 1960s, of several parasites for biological control of the pestiferous southern green stink bug, *Nezara viridula* (Howarth, 2000). Another group important in the ecology of the Refuge is the native cutworm moths (*Agrotis* and *Peridroma*). Only two species were found. Several upland species fed on grasses and until about 20 years ago, were often abundant on the upper slopes of Mauna Kea. Several predators and parasites were purposefully introduced to control them, and some members of the group are now very rare (Gagne and Howarth, 1985).

The endemic seed bug, *Nesomartis psammophila* Kirkaldy, 1907, was last collected in the early 1970s from a high-elevation wetland on Mauna Loa, a habitat similar to parts of the Refuge. Until about 50 years ago, it was one of the most abundant true bugs in Hawaii, and the reason for its demise is unknown.

Overall, the diversity seemed lower than expected and increased at lower elevation sites. These results agree with the conclusions of a study on Kilauea by Gagne (1981), who found a clear correlation of native arthropod distribution with altitude with the highest biodiversity occurring between 3,500 and 4,000 feet elevation. Most of the study sites sampled at Hakalau were at or above the upper limit of range for many native arthropod species.

Acknowledgments

This project was a collaborative effort involving many staff from several agencies and organizations. We thank Dan Polhemus, Smithsonian Institution, Washington, for field assistance and providing the status report on the Heteroptera; David Foot, USGS/BRD Pacific Island Ecosystems Research Center, Volcano, Hawaii, for generous logistical support and for the reports on invasive aliens, endemic *Drosophila*, and damselflies; Jack Jeffrey, Refuge Biologist, Hakalau Forest National Wildlife Refuge, for providing information, logistical support and for servicing the insect traps; Leonard Freed, University of Hawaii (Hakalau Forest Biological Field Station) for logistical support; Daniel Chung for assistance in identifying the mollusks; Robert Cowie, University of Hawaii, and Lisa Hadway, Hawaii Dept. of land and Natural Resources, Hilo, for assistance and information during the early phase of the project; Tracie McKenzie of HBS for assistance in preparing the reports; Kieth Arakaki, G. Allen Samuelson, and Neal Evenhuis for assistance with arthropod species identifications.
References

Table 1. Location, method employed, date, elevation, coordinates and habitat of arthropod collection sites at the Hakalau Forest National Wildlife Refuge.

<table>
<thead>
<tr>
<th>No.</th>
<th>Transect/Location</th>
<th>Method</th>
<th>Date</th>
<th>Elevation</th>
<th>Latitude WGS 84</th>
<th>Longitude WGS 84</th>
<th>Habitat/Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pua Akala</td>
<td>Malaise # 1</td>
<td>13.ii.-5.x.02</td>
<td>5490'</td>
<td>19°47.152'N</td>
<td>155°18.463'W</td>
<td>Open ohia forest with native understory</td>
</tr>
<tr>
<td>2</td>
<td>Pua Akala Tr. 1A</td>
<td>Gressitt’s malaise</td>
<td>7-11. vii.02</td>
<td>5465'</td>
<td>19°47.061'N</td>
<td>155°18.441'W</td>
<td>Across stream in open ohia forest</td>
</tr>
<tr>
<td>3</td>
<td>Pua Akala</td>
<td>Lindgren Funnels</td>
<td>7.vii.02-5.x.02</td>
<td>5490'</td>
<td>19°47.147'N</td>
<td>155°18.468'W</td>
<td>Open ohia forest with native understory</td>
</tr>
<tr>
<td>4</td>
<td>Pua Akala</td>
<td>MV-light</td>
<td>12.iii.02</td>
<td>5480'</td>
<td>19°47.084'N</td>
<td>155°18.471'W</td>
<td>Open ohia forest with native understory</td>
</tr>
<tr>
<td>5</td>
<td>Pua Akala</td>
<td>MV-light</td>
<td>7.vii.02</td>
<td>6070'</td>
<td>19°47.356'N</td>
<td>155°19.351'W</td>
<td>Open ohia koa forest</td>
</tr>
<tr>
<td>6</td>
<td>Pua Akala /1A</td>
<td>Fog</td>
<td>12.iii.02</td>
<td>5470'</td>
<td>19°47.037'N</td>
<td>155°18.452'W</td>
<td>Fallen ohia log at forest margin</td>
</tr>
<tr>
<td>7</td>
<td>Pua Akala</td>
<td>2 fogs</td>
<td>12.iii.02</td>
<td>6250'</td>
<td>19°47.484'N</td>
<td>155°19.647'W</td>
<td>Ohia buttresses in recovering pasture</td>
</tr>
<tr>
<td>8</td>
<td>Pua Akala</td>
<td>fog & search</td>
<td>12.iii.02</td>
<td>5475'</td>
<td>19°47.064'N</td>
<td>155°18.462'W</td>
<td>Open ohia forest with native understory</td>
</tr>
<tr>
<td>9</td>
<td>Pua Akala</td>
<td>day fogs</td>
<td>7.vii.02</td>
<td>6070'</td>
<td>19°47.356'N</td>
<td>155°19.351'W</td>
<td>Open ohia koa forest</td>
</tr>
<tr>
<td>10</td>
<td>Puu Akala</td>
<td>fogging koa log</td>
<td>8.vii.02</td>
<td>5490'</td>
<td>19°47.149'N</td>
<td>155°18.463'W</td>
<td>Open ohia forest</td>
</tr>
<tr>
<td>11</td>
<td>Pua Akala Tr. 1A</td>
<td>Fogging</td>
<td>11.vii.02</td>
<td>5465'</td>
<td>19°47.061'N</td>
<td>155°18.441'W</td>
<td>Open ohia forest with native understory</td>
</tr>
<tr>
<td>12</td>
<td>Pua Akala Tr. 1A</td>
<td>3+ Fogging</td>
<td>11.iii.02</td>
<td>5465'</td>
<td>19°47.023'N</td>
<td>155°18.425'W</td>
<td>Open ohia forest with native understory</td>
</tr>
<tr>
<td>13</td>
<td>Pua Akala/ tr1A; stn 6</td>
<td>2 fogs</td>
<td>2.x.02</td>
<td>5295'</td>
<td>19°47.074'N</td>
<td>155°17.885'W</td>
<td>Wet ohia forest</td>
</tr>
<tr>
<td>14</td>
<td>Pua Akala</td>
<td>host searches [Rubus, etc.]</td>
<td>7.vii.02</td>
<td>6070'</td>
<td>19°47.356'N</td>
<td>155°19.351'W</td>
<td>Wet gulch with native trees and shrubs</td>
</tr>
<tr>
<td>15</td>
<td>Puu Akala</td>
<td>beating, ohia</td>
<td>8.vii.02</td>
<td>5490'</td>
<td>19°47.149'N</td>
<td>155°18.463'W</td>
<td>Open ohia forest</td>
</tr>
<tr>
<td>16</td>
<td>Pua Akala</td>
<td>General/</td>
<td>8.vii.02</td>
<td>5480'</td>
<td>19°47.074'N</td>
<td>155°18.467'W</td>
<td>Open ohia forest</td>
</tr>
<tr>
<td>17</td>
<td>Pua Akala</td>
<td>General/</td>
<td>8.vii.02</td>
<td>5700'</td>
<td>19°47.215'N</td>
<td>155°18.851'W</td>
<td>Roadside pool in open ohia forest</td>
</tr>
<tr>
<td>18</td>
<td>Pua Akala/ tr1A</td>
<td>General/</td>
<td>2.x.02</td>
<td>5350'</td>
<td>19°47.052'N</td>
<td>155°18.06'W</td>
<td>Bog in wet ohia forest</td>
</tr>
<tr>
<td>19</td>
<td>Pua Akala/ tr1A; stn 6</td>
<td>Host searches</td>
<td>2.x.02</td>
<td>5295'</td>
<td>19°47.074'N</td>
<td>155°17.885'W</td>
<td>Wet ohia forest</td>
</tr>
<tr>
<td>20</td>
<td>Pua Akala/ tr1A</td>
<td>Fog</td>
<td>2.x.02</td>
<td>5370'</td>
<td>19°47.046'N</td>
<td>155°18.132'W</td>
<td>Wet ohia forest</td>
</tr>
<tr>
<td>21</td>
<td>Pua Akala/ tr1A</td>
<td>Fogs</td>
<td>13.iii.03</td>
<td>5160'</td>
<td>19°47.05'N</td>
<td>155°18.64'W</td>
<td>Wet ohia forest</td>
</tr>
</tbody>
</table>
Table 1. (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Transect/Location</th>
<th>Method</th>
<th>Date</th>
<th>Elevation</th>
<th>Latitude WGS 84</th>
<th>Longitude WGS 84</th>
<th>Habitat/Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Maulua Tr. 13</td>
<td>Malaise trap #2</td>
<td>13.ii.02 to 6.x.02</td>
<td>5150'</td>
<td>19°52.299'N</td>
<td>155°17.987'W</td>
<td>Ohia forest with native understory</td>
</tr>
<tr>
<td>23</td>
<td>Maulua Tr. 13</td>
<td>Lindgren funnels</td>
<td>9.vii.02 to 6.x.02</td>
<td>5150'</td>
<td>19°52.299'N</td>
<td>155°17.987'W</td>
<td>Ohia forest with native understory</td>
</tr>
<tr>
<td>24</td>
<td>Maulua Tr. 13</td>
<td>MV Bulb</td>
<td>14.iii.02</td>
<td>5910'</td>
<td>19°51.89'N</td>
<td>155°19.62'W</td>
<td>Recovering pasture, koa savanna.</td>
</tr>
<tr>
<td>25</td>
<td>Maulua</td>
<td>MV Bulb</td>
<td>9.vii.02</td>
<td>6010'</td>
<td>19°52.023'N</td>
<td>155°19.891'W</td>
<td>Open koa woodland</td>
</tr>
<tr>
<td>26</td>
<td>Maulua Tr. 13</td>
<td>fog</td>
<td>14.iii.02</td>
<td>5910'</td>
<td>19°51.93'N</td>
<td>155°19.66'W</td>
<td>Fallen log in recovering pasture, koa savanna.</td>
</tr>
<tr>
<td>27</td>
<td>Maulua Tr. 13</td>
<td>fog</td>
<td>14.iii.02</td>
<td>5920'</td>
<td>19°52.0'N</td>
<td>155°19.75'W</td>
<td>Myrsine sp. in recovering pasture, koa savanna.</td>
</tr>
<tr>
<td>28</td>
<td>Maulua Tr. 13</td>
<td>fog</td>
<td>14.iii.02</td>
<td>5904'</td>
<td>19°51.97'N</td>
<td>155°19.70'W</td>
<td>Rubus hawaiiensis in recovering pasture, koa savanna.</td>
</tr>
<tr>
<td>29</td>
<td>Maulua Tr. 13</td>
<td>Fogging</td>
<td>9.vii.02</td>
<td>5010'</td>
<td>19°52.347'N</td>
<td>155°17.792'W</td>
<td>Ohia forest with native understory</td>
</tr>
<tr>
<td>30</td>
<td>Maulua Tr. 13</td>
<td>Fogging</td>
<td>9.vii.02</td>
<td>5010'</td>
<td>19°52.347'N</td>
<td>155°17.792'W</td>
<td>Ohia forest with native understory</td>
</tr>
<tr>
<td>31</td>
<td>Maulua</td>
<td>Fog koa & lichens</td>
<td>10.vii.02</td>
<td>5825'</td>
<td>19°51.975'N</td>
<td>155°19.48'W</td>
<td>koa, ohia, ferns, akala, grasses</td>
</tr>
<tr>
<td>32</td>
<td>Maulua</td>
<td>Fog ohia folliage</td>
<td>10.vii.02</td>
<td>5805'</td>
<td>19°52.005'N</td>
<td>155°19.457'W</td>
<td>Ohia koa woodland</td>
</tr>
<tr>
<td>33</td>
<td>Maulua</td>
<td>Fog fallen koa tree</td>
<td>10.vii.02</td>
<td>5690'</td>
<td>19°51.897'N</td>
<td>155°19.214'W</td>
<td>Koa</td>
</tr>
<tr>
<td>34</td>
<td>Maulua/ tr13</td>
<td>Fog</td>
<td>6.x.02</td>
<td>4970'</td>
<td>19°52.939'N</td>
<td>155°17.721'W</td>
<td>Ohia forest with native understory</td>
</tr>
<tr>
<td>35</td>
<td>Maulua/ tr13</td>
<td>Fog</td>
<td>6.x.02</td>
<td>4970'</td>
<td>19°52.394'N</td>
<td>155°17.725'W</td>
<td>Ohia forest with native understory</td>
</tr>
<tr>
<td>36</td>
<td>Maulua/ tr13</td>
<td>Fog</td>
<td>6.x.02</td>
<td>4960'</td>
<td>19°52.373'N</td>
<td>155°17.705'W</td>
<td>Ohia forest with native understory</td>
</tr>
<tr>
<td>37</td>
<td>Maulua</td>
<td>Rotting wood General</td>
<td>9.vii.02</td>
<td>5260'</td>
<td>19°52.314'N</td>
<td>155°18.337'W</td>
<td>Grassland</td>
</tr>
<tr>
<td>38</td>
<td>Maulua</td>
<td>Fallen koa & Ohia General</td>
<td>9.vii.02</td>
<td>5155'</td>
<td>19°52.652'N</td>
<td>155°18.037'W</td>
<td>Open ohia koa woodland.</td>
</tr>
<tr>
<td>39</td>
<td>Maulua Tr. 13</td>
<td>host searches General</td>
<td>9.vii.02</td>
<td>5010'</td>
<td>19°52.347'N</td>
<td>155°17.792'W</td>
<td>Recovering pasture, koa savanna.</td>
</tr>
<tr>
<td>40</td>
<td>Maulua</td>
<td>General</td>
<td>10.vii.02</td>
<td>5830'</td>
<td>19°51.958'N</td>
<td>155°19.479'W</td>
<td>koa, ohia, ferns, akala, grasses</td>
</tr>
<tr>
<td>41</td>
<td>Maulua</td>
<td>Fog large koa butt.</td>
<td>10.vii.02</td>
<td>5820'</td>
<td>19°51.985'N</td>
<td>155°19.47'W</td>
<td>Ohia koa woodland</td>
</tr>
<tr>
<td>42</td>
<td>Maulua/ tr13</td>
<td>sweeping Sadleria General</td>
<td>6.x.02</td>
<td>4960'</td>
<td>19°52.373'N</td>
<td>155°17.705'W</td>
<td>Ohia forest with native understory</td>
</tr>
<tr>
<td>43</td>
<td>Maulua Spring Water Camp</td>
<td>sweeping sedges General</td>
<td>6.x.02</td>
<td>5045'</td>
<td>19°52.105'N</td>
<td>155°17.823'W</td>
<td>Disturbed wetland</td>
</tr>
<tr>
<td>No.</td>
<td>Transect/Location</td>
<td>Method</td>
<td>Date</td>
<td>Elevation</td>
<td>Latitude WGS 84</td>
<td>Longitude WGS 84</td>
<td>Habitat/Vegetation</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>44</td>
<td>Pua Akala Awehi Stream</td>
<td>MV light & searches</td>
<td>3-4.x.02</td>
<td>4210'</td>
<td>19°46.386’N</td>
<td>155°16.025’W</td>
<td>Bog</td>
</tr>
<tr>
<td>45</td>
<td>Pua Akala Awehi Stream</td>
<td>Fog</td>
<td>3.x.02</td>
<td>4190'</td>
<td>19°46.358’N</td>
<td>155°16.001’W</td>
<td>Very wet ohia forest</td>
</tr>
<tr>
<td>46</td>
<td>Pua Akala Awehi Stream</td>
<td>2 Fogs</td>
<td>3.x.02</td>
<td>4180’</td>
<td>19°46.347’N</td>
<td>155°15.992’W</td>
<td>Very wet ohia forest</td>
</tr>
<tr>
<td>47</td>
<td>Pua Akala Awehi Stream</td>
<td>Fog</td>
<td>3.x.04</td>
<td>4160’</td>
<td>19°46.304’N</td>
<td>155°15.947’W</td>
<td>wet cliff above stream bank</td>
</tr>
<tr>
<td>48</td>
<td>Pua Akala Awehi Stream</td>
<td>Fog</td>
<td>4.x.04</td>
<td>4225’</td>
<td>19°46.473’N</td>
<td>155°15.924’W</td>
<td>Cibotium fronds in wet ohia tree fern forest</td>
</tr>
<tr>
<td>49</td>
<td>Pua Akala Awehi Stream</td>
<td>Host search</td>
<td>4.x.04</td>
<td>4225’</td>
<td>19°46.473’N</td>
<td>155°15.924’W</td>
<td>Cibotium fronds in wet ohia tree fern forest</td>
</tr>
<tr>
<td>50</td>
<td>Pua Akala Awehi Stream</td>
<td>Host search</td>
<td>3.x.04</td>
<td>4160’</td>
<td>19°46.304’N</td>
<td>155°15.947’W</td>
<td>wet cliff above stream bank</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Hakalau Tract Bird Res. Stn</td>
<td>Fogs</td>
<td>12.iii.02 to 6.x.03</td>
<td>6385'</td>
<td>19°49.18’N</td>
<td>155°19.90’W</td>
<td>Ohia, koa, akala, ferns, in stream bed.</td>
</tr>
<tr>
<td>53</td>
<td>Hakalau Tract Bird Res. Stn</td>
<td>General</td>
<td>12.iii.02 to 6.x.03</td>
<td>6415'</td>
<td>19°49.212’N</td>
<td>155°19.903’W</td>
<td>Pasture, koa.</td>
</tr>
</tbody>
</table>
Table 2. List of potentially sensitive species of insects and other arthropods likely to occur in the Hakalau Forest National Wildlife Refuge and well enough known and conspicuous enough to serve as indicator taxa.

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Rarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARANEAE: Linyphiidae
Orsonwelles species</td>
<td>Large conspicuous webs</td>
</tr>
<tr>
<td>ARANEAE: Tetragnathidae
Tetragnatha species</td>
<td>Many species, in diverse habits</td>
</tr>
<tr>
<td>COLEOPTERA: Aglycyneridae
Proterhinus species</td>
<td>Many species, sparse or on rare host</td>
</tr>
<tr>
<td>COLEOPTERA: Carabidae
Several genera</td>
<td>Many species, in diverse habitats</td>
</tr>
<tr>
<td>COLEOPTERA: Cerambycidae
Plagithmysus species</td>
<td>Many rare species, on rare hosts, important food for birds</td>
</tr>
<tr>
<td>COLEOPTERA: Curculionidae
Achalles species</td>
<td>Flightless weevils, rarely seen</td>
</tr>
<tr>
<td>COLEOPTERA: Aglycyneridae
Proterhinus species</td>
<td>Flightless weevils, rarely seen</td>
</tr>
<tr>
<td>COLEOPTERA: Nitidulidae
Several genera</td>
<td>Rare species</td>
</tr>
<tr>
<td>COLEOPTERA: Elateridae
Eopenthes species</td>
<td>Many rare species</td>
</tr>
<tr>
<td>COLEOPTERA: Nitidulidae
Several genera</td>
<td>Many species on rare hosts</td>
</tr>
<tr>
<td>DIPTERA: Calliphoridae
Dyscritomia species</td>
<td>Many species recently declining</td>
</tr>
<tr>
<td>DIPTERA: Dolichopodidae
Emperoidea hawaiiensis (Hardy & Delfinado)</td>
<td>flightless fly. Possibly extinct,</td>
</tr>
<tr>
<td>DIPTERA: Drosophilidae
Drosophila species and related forms</td>
<td>45 species possible, some very rare</td>
</tr>
<tr>
<td>DIPTERA: Muscidae
Lispocephala species</td>
<td>Many species, some rare, predators</td>
</tr>
<tr>
<td>HETEROPTERA: Lygaeidae
Several genera</td>
<td>Many species rarely collected, parasites</td>
</tr>
<tr>
<td>HETEROPTERA: Miridae
Several genera</td>
<td>Many species, on rare hosts</td>
</tr>
<tr>
<td>HETEROPTERA: Nabidae
Nabis species</td>
<td>Many species, on rare hosts</td>
</tr>
<tr>
<td>HETEROPTERA: Pentatomidae
Oechalia species</td>
<td>Many species rarely collected</td>
</tr>
<tr>
<td>HETEROPTERA: Reduviidae
Nesidiolestes ana Gagné & Howarth</td>
<td>Many species, all species in serious decline</td>
</tr>
<tr>
<td>HETEROPTERA: Scutelleridae
Coleotichus blackburniae White</td>
<td>Rare, specialized habitat (cave)</td>
</tr>
<tr>
<td>HOMOPTERA: Cixiidae
Oliarius species</td>
<td>Rare, rain forest predator</td>
</tr>
<tr>
<td>HOMOPTERA: Cixiidae
Orthoptera species</td>
<td>Rare, rain forest predator</td>
</tr>
<tr>
<td>HOMOPTERA: Cixiidae
Orthoptera species</td>
<td>Common in 1970s now rarely collected</td>
</tr>
<tr>
<td>HOMOPTERA: Cixiidae
Orthoptera species</td>
<td>Many species, diverse hosts</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Rarity</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>HYMENOPTERA: COLLETIDAE</td>
<td></td>
</tr>
<tr>
<td>Hylaees species</td>
<td>Many species rare, important pollinators</td>
</tr>
<tr>
<td>HYMENOPTERA: ICHNEUMONIDAE</td>
<td></td>
</tr>
<tr>
<td>Enicospilus species</td>
<td>Many species rare, parasites</td>
</tr>
<tr>
<td>HYMENOPTERA: SPHECIDAE</td>
<td></td>
</tr>
<tr>
<td>Ectemnius species</td>
<td>Many species rare, predatory wasps</td>
</tr>
<tr>
<td>HYMENOPTERA: VESPIDAE</td>
<td></td>
</tr>
<tr>
<td>Odynerus species</td>
<td>Many species rare, predatory wasps</td>
</tr>
<tr>
<td>LEPIDOPTERA: CARPOSINIDAE</td>
<td></td>
</tr>
<tr>
<td>Carposina species</td>
<td>Many species rare, fruit moths</td>
</tr>
<tr>
<td>LEPIDOPTERA: COSMOPTERIGIDAE</td>
<td></td>
</tr>
<tr>
<td>Hyposmocoma species</td>
<td>> 40 species in Refuge, diverse habits</td>
</tr>
<tr>
<td>LEPIDOPTERA: CRAMBIDAE</td>
<td></td>
</tr>
<tr>
<td>Omiodes species</td>
<td>rare species, on rare hosts, leafrollers</td>
</tr>
<tr>
<td>Udea species</td>
<td>Many species rare</td>
</tr>
<tr>
<td>LEPIDOPTERA: GEOMETRIDAE</td>
<td></td>
</tr>
<tr>
<td>Eupithecia species</td>
<td>rare species, predatory caterpillars</td>
</tr>
<tr>
<td>LEPIDOPTERA: LYCAENIDAE</td>
<td></td>
</tr>
<tr>
<td>Udara blackburni (Tuely)</td>
<td>Common, 1 of 2 native butterflies</td>
</tr>
<tr>
<td>LEPIDOPTERA: LYCAENIDAE</td>
<td></td>
</tr>
<tr>
<td>Vanessa tameamea Esc.</td>
<td>Common, 1 of 2 endemic butterflies</td>
</tr>
<tr>
<td>LEPIDOPTERA: OECOPHORIDAE</td>
<td></td>
</tr>
<tr>
<td>Thyrocoa species</td>
<td>Many species, diverse habits; important food for birds</td>
</tr>
<tr>
<td>LEPIDOPTERA: SPHINGIDAE</td>
<td></td>
</tr>
<tr>
<td>Hyles callida hawaiensis Roths.&Jord.</td>
<td>Possibly extinct</td>
</tr>
<tr>
<td>NEUROPTERA: CHRYSOPIDAE</td>
<td></td>
</tr>
<tr>
<td>Anomalochrysa species</td>
<td>Many species, predators, very rare</td>
</tr>
<tr>
<td>NEUROPTERA: HEMEROBIIDAE</td>
<td></td>
</tr>
<tr>
<td>Micromus species</td>
<td>Many species, predators, very rare</td>
</tr>
<tr>
<td>ODONATA: COENAGRIONIDAE</td>
<td></td>
</tr>
<tr>
<td>Megalagrion amaurodytum peles (Perkins)</td>
<td>Sparse</td>
</tr>
<tr>
<td>ORTHOPTERA: GRYLLIDAE</td>
<td></td>
</tr>
<tr>
<td>Caconemobius varius Gurney & Rentz</td>
<td>Rare, specialized habitat (cave)</td>
</tr>
<tr>
<td>DIPLOPODA: CAMBALIDAE</td>
<td></td>
</tr>
<tr>
<td>Nannolene species</td>
<td>Millipedes, leaf litter and caves, rare</td>
</tr>
</tbody>
</table>
Table 3. Proposed and candidate species of arthropods known to occur (or to have historically occurred) on Hawai‘i Island (updated by USFWS October 30, 2001).

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPOSED SPECIES</td>
<td></td>
</tr>
<tr>
<td>Drosophila mulli Perreira & Kaneshiro, 1990</td>
<td>pomace fly (no common name)</td>
</tr>
<tr>
<td>Drosophila heteroneura (Perkins, 1910)</td>
<td>pomace fly (no common name)</td>
</tr>
<tr>
<td>Drosophila ochrobasis Hardy & Kaneshiro, 1968</td>
<td>pomace fly (no common name)</td>
</tr>
<tr>
<td>CANDIDATE SPECIES</td>
<td></td>
</tr>
<tr>
<td>ODONATA: COENAGRIONIDAE</td>
<td></td>
</tr>
<tr>
<td>Megalagrion nesiotes (Perkins, 1899)</td>
<td>Nesiotes megalagrion damselfly</td>
</tr>
<tr>
<td>Megalagrion pacificum (McLachlan, 1883)</td>
<td>Pacific megalagrion damselfly</td>
</tr>
<tr>
<td>Megalagrion xanthomelas (Selys-Longchamps, 1876)</td>
<td>Orangeblack megalagrion damselfly</td>
</tr>
<tr>
<td>HETEROPTERA: LYGAEIDAE</td>
<td></td>
</tr>
<tr>
<td>Nysius wekiuicola Ashlock & Gagne, 1985</td>
<td>Wekiu bug</td>
</tr>
<tr>
<td>DIPTERA: DROSOPHILIDAE</td>
<td></td>
</tr>
<tr>
<td>Drosophila digressa Hardy & Kaneshiro, 1968</td>
<td>pomace fly (no common name)</td>
</tr>
</tbody>
</table>

* Potentially occurs in the Refuge.
Table 4. Arthropod species of concern known to occur (or to have historically occurred) on Hawai‘i Island (updated by USFWS August 31, 2000).

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCHAEOGNATHA: MACHILIDAE</td>
<td></td>
</tr>
<tr>
<td>Neomachilis heteropus (Silvestri, 1904)</td>
<td>Hawaiian long-palp bristletail</td>
</tr>
<tr>
<td>COLEOPTERA: AGLYCYDERIDAE</td>
<td></td>
</tr>
<tr>
<td>Proterhinus species: 72 spp. (not specified)</td>
<td>Primitive broad-nose weevils</td>
</tr>
<tr>
<td>COLEOPTERA: CERAMBYCIDAE</td>
<td></td>
</tr>
<tr>
<td>Plagithmysus claviger (Sharp, 1900)</td>
<td>Hawai‘i clubbed long-horned beetle</td>
</tr>
<tr>
<td>Plagithmysus decorus Perkins, 1921</td>
<td>Hawai‘i decorus long-horned beetle</td>
</tr>
<tr>
<td>Plagithmysus elegans Sharp, 1910</td>
<td>Hawai‘i elegant long-horned beetle</td>
</tr>
<tr>
<td>Plagithmysus greenwelli Gressitt & Davis, 1971</td>
<td>Greenwell’s long-horned beetle</td>
</tr>
<tr>
<td>Plagithmysus kohalae Perkins, 1927</td>
<td>Kohala long-horned beetle</td>
</tr>
<tr>
<td>Plagithmysus kraussi Gressitt & Davis, 1970</td>
<td>Krauss’ long-horned beetle</td>
</tr>
<tr>
<td>Plagithmysus mezoneuri (Swezey, 1946)</td>
<td>Hawai‘i uhiuhi long-horned beetle</td>
</tr>
<tr>
<td>Plagithmysus platydesmae Perkins, 1920</td>
<td>Pilo kea long-horned beetle</td>
</tr>
<tr>
<td>Plagithmysus podagricus (Perkins, 1927)</td>
<td>Podagricus long-horned beetle</td>
</tr>
<tr>
<td>Plagithmysus simplicollis Sharp, 1910</td>
<td>Simple-necked long-horned beetle</td>
</tr>
<tr>
<td>Plagithmysus sulphurescens Sharp, 1896</td>
<td>Hawai‘i opuhe long-horned beetle</td>
</tr>
<tr>
<td>Plagithmysus swezeyi Perkins, 1920</td>
<td>Swezey’s long-horned beetle</td>
</tr>
<tr>
<td>Plagithmysus vicinus Sharp, 1896</td>
<td>Hawai‘i alani long-horned beetle</td>
</tr>
<tr>
<td>COLEOPTERA: CURCULIONIDAE</td>
<td></td>
</tr>
<tr>
<td>Nesotocus giffardi Perkins, 1910</td>
<td>Giffard’s nesotocus weevil</td>
</tr>
<tr>
<td>Nesotocus munroi Perkins, 1900</td>
<td>Munro’s nesotocus weevil</td>
</tr>
<tr>
<td>COLEOPTERA: CURCULIONIDAE</td>
<td></td>
</tr>
<tr>
<td>Rhyncogonus giffardi Sharp, 1919</td>
<td>Giffard’s rhyncogonus weevil</td>
</tr>
<tr>
<td>COLEOPTERA: ELATERIDAE</td>
<td></td>
</tr>
<tr>
<td>Eopenthes cognatus Sharp, 1908</td>
<td>Cognatus eopenthes click beetle</td>
</tr>
<tr>
<td>Eopenthes tinctus Sharp, 1908</td>
<td>Tinged eopenthes click beetle</td>
</tr>
<tr>
<td>HETEROPTERA: LYGAEIDAE</td>
<td></td>
</tr>
<tr>
<td>Metrarga obscura Blackburn, 1888</td>
<td>Mauna Loa seed bug</td>
</tr>
<tr>
<td>Nesocryptias villosa (White, 1878)</td>
<td>Villosan flightless seed bug</td>
</tr>
<tr>
<td>Oceanides bryani Usinger, 1942</td>
<td>Bryan’s oceanides seed bug</td>
</tr>
<tr>
<td>HETEROPTERA: MESOVELIIDAE</td>
<td></td>
</tr>
<tr>
<td>Cavaticovelia aaa (Gagné & Howarth, 1975)</td>
<td>Aaa water treader bug</td>
</tr>
<tr>
<td>HETEROPTERA: MIRIDAE</td>
<td></td>
</tr>
<tr>
<td>Engyptatus species 2</td>
<td>‘Ānunu plant bug,</td>
</tr>
<tr>
<td>Kalania hawaiensis (Kirkaldy, 1902)</td>
<td>Lana‘i kalanian leaf bug</td>
</tr>
<tr>
<td>HETEROPTERA: PENTATOMIDAE</td>
<td></td>
</tr>
<tr>
<td>Oechalia grisea (Burmeister, 1834)</td>
<td>Gray oechalia stink bug</td>
</tr>
<tr>
<td>Oechalia patruelis (Stal, 1859)</td>
<td>Patruelis oechalia stink bug</td>
</tr>
</tbody>
</table>

continued...
Table 4. (Continued)

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HETEROPTERA: REDUVIIDAE</td>
<td></td>
</tr>
<tr>
<td>Empicoris pulcher (Blackburn, 1888)</td>
<td>Pulchrus thread-legged bug</td>
</tr>
<tr>
<td>Nesidiolestes ana Gagné & Howarth, 1975</td>
<td>Cave thread-legged bug</td>
</tr>
<tr>
<td>Nesidiolestes selium Kirkaldy, 1902</td>
<td>Rain forest thread-legged bug</td>
</tr>
<tr>
<td>HETEROPTERA: RHOPALIDAE</td>
<td></td>
</tr>
<tr>
<td>Ithamar annectans Van Duzee, 1936</td>
<td>Annectans rhopalid bug</td>
</tr>
<tr>
<td>Ithamar hawaiiensis Kirkaldy, 1902</td>
<td>Hawaiian rhopalid bug</td>
</tr>
<tr>
<td>HETEROPTERA: SCUTELLARIDAE</td>
<td></td>
</tr>
<tr>
<td>Coleotichus blackburniae White, 1881</td>
<td>Koa bug</td>
</tr>
<tr>
<td>HOMOPTERA: CIXIIDAE</td>
<td></td>
</tr>
<tr>
<td>Oliarus “lorettae”</td>
<td>Loretta Lynn’s cave planthopper</td>
</tr>
<tr>
<td>Oliarus species 1</td>
<td>Doc Bellou cave planthopper</td>
</tr>
<tr>
<td>Oliarus species 2</td>
<td>Pahoa cave planthopper</td>
</tr>
<tr>
<td>HOMOPTERA: DELPHACIDAE</td>
<td></td>
</tr>
<tr>
<td>Nesoxydyne cyrtandricola Muir, 1918</td>
<td>Glenwood nesoxydyne planthopper</td>
</tr>
<tr>
<td>HYMENOPTERA: COLLETIDAE</td>
<td></td>
</tr>
<tr>
<td>Hylaeus anthracina (F. Smith, 1853)</td>
<td>Anthracinan yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus assimulans (Perkins, 1899)</td>
<td>Assimulans yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus comes (Perkins, 1899)</td>
<td>Comes yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus coniceps (Blackburn, 1886)</td>
<td>Conehead yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus crabronoides (Perkins, 1899)</td>
<td>Crabronoid yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus difficilis (Perkins, 1899)</td>
<td>Difficult yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus dimidiata (Perkins, 1899)</td>
<td>Dimidiatan yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus facilis (F. Smith, 1879)</td>
<td>Easy yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus filicum (Perkins, 1912)</td>
<td>Fern yellow-faced beeHylaeus</td>
</tr>
<tr>
<td>Hylaeus flavipes (F. Smith, 1853)</td>
<td>Yellow-foot yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus hula (Perkins, 1912)</td>
<td>Hulan yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus insignis (Perkins, 1899)</td>
<td>Insignis yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus kona (Blackburn, 1886)</td>
<td>Kona yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus laeta (Perkins, 1899)</td>
<td>Laetan yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus obscurata (Perkins, 1899)</td>
<td>Obscuratan yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus ombrias (Perkins, 1910)</td>
<td>Ombrias yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus pubescens (Perkins, 1899)</td>
<td>Furry yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus simplex (Perkins, 1899)</td>
<td>Simple yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus specularis (Perkins, 1899)</td>
<td>Specular yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus sphecodoides (Perkins, 1899)</td>
<td>Sphecodoid yellow-faced bee</td>
</tr>
<tr>
<td>Hylaeus vicina (Perkins)</td>
<td>Vicinan yellow-faced bee</td>
</tr>
</tbody>
</table>

continued...
Table 4. (Continued)

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYMENOPTERA: SPHECIDAE</td>
<td></td>
</tr>
<tr>
<td>Deinomimesa hawaiiensis Perkins, 1899</td>
<td>Hawaiian deinomimesan wasp</td>
</tr>
<tr>
<td>Deinomimesa punae Perkins, 1899</td>
<td>Puna deinomimesan sphecid wasp</td>
</tr>
<tr>
<td>Ectemnius bidecoratus (Perkins, 1899)</td>
<td>Bidecoratus sphecid wasp</td>
</tr>
<tr>
<td>Ectemnius curtipes (Perkins, 1899)</td>
<td>Short-foot ectemnius sphecid wasp</td>
</tr>
<tr>
<td>Ectemnius fulvicrus (Perkins, 1899)</td>
<td>Brown cross ectemnius sphecid wasp</td>
</tr>
<tr>
<td>Ectemnius rubrocaudatus (Blackburn, 1886)</td>
<td>Red-tail ectemnius sphecid wasp</td>
</tr>
<tr>
<td>Ectemnius yoshimotoi Bohart, 1976</td>
<td>Yoshimoto’s ectemnius wasp</td>
</tr>
<tr>
<td>HYMENOPTERA: VESPIDAE</td>
<td></td>
</tr>
<tr>
<td>Odynerus nigripennis (Holmgren, 1869)</td>
<td>Black-winged odynerus vespid wasp</td>
</tr>
<tr>
<td>LEPIDOPTERA: CRAMBIIDAE</td>
<td></td>
</tr>
<tr>
<td>Glyphodes cyanomichla (Meyrick, 1899)</td>
<td>Blue margaronian moth</td>
</tr>
<tr>
<td>Omiodes anastrepta Meyrick, 1899</td>
<td>Moloka’i sedge hedyleptan moth</td>
</tr>
<tr>
<td>Omiodes anastreptoides Swezey, 1913</td>
<td>Kohala sedge hedyleptan moth</td>
</tr>
<tr>
<td>Omiodes asaphombra Meyrick, 1899</td>
<td>‘Ohe omiodes moth</td>
</tr>
<tr>
<td>Omiodes euryprora Meyrick, 1899</td>
<td>‘Öla’a banana hedyleptan moth</td>
</tr>
<tr>
<td>Omiodes fullawayi Swezey, 1913</td>
<td>Fullaway’s banana hedyleptan moth</td>
</tr>
<tr>
<td>Omiodes giffardi Swezey, 1921</td>
<td>Giffard’s ‘ohe hedyleptan moth</td>
</tr>
<tr>
<td>Omiodes iridias Meyrick, 1899</td>
<td>Kilauea pa‘inii hedgeleptan moth</td>
</tr>
<tr>
<td>Omiodes meyricki Swezey, 1907</td>
<td>Meyrick’s banana hedyleptan moth</td>
</tr>
<tr>
<td>Omiodes monogona Meyrick, 1888</td>
<td>Hawaiian bean leafroller (moth)</td>
</tr>
<tr>
<td>Omiodes pritchardii Swezey, 1948</td>
<td>Hawaiian lo‘ulu hedyleptan moth</td>
</tr>
<tr>
<td>Stemorrhages exaula (Meyrick, 1888)</td>
<td>Green margaronian moth</td>
</tr>
<tr>
<td>Udea dryadopa (Meyrick, 1899)</td>
<td>‘Ohenaupaka udean moth</td>
</tr>
<tr>
<td>LEPIDOPTERA: NOCTUIDAE</td>
<td></td>
</tr>
<tr>
<td>Agrotis melanoneura Meyrick, 1899</td>
<td>Black-veined agrotis noctuid moth</td>
</tr>
<tr>
<td>Agrotis microreas Meyrick, 1899</td>
<td>Micoreas agrotis noctuid moth</td>
</tr>
<tr>
<td>Anomis vulpicolor Meyrick, 1928</td>
<td>Red anomis noctuid moth</td>
</tr>
<tr>
<td>Helicoverpa confusa Hardwick, 1965</td>
<td>Confused helicoverpan noctuid moth</td>
</tr>
<tr>
<td>NEUROPTERA: HEMEROBIIDAE</td>
<td></td>
</tr>
<tr>
<td>Micromus usingeri (Zimmerman, 1940)</td>
<td>Usinger’s brown lacewing</td>
</tr>
<tr>
<td>ODONATA: COENAGRIONIDAE</td>
<td></td>
</tr>
<tr>
<td>Megalagrion amaurodymtum peles (Perkins, 1899)</td>
<td>Pele ‘ie‘ie damselfly</td>
</tr>
<tr>
<td>Megalagrion nigrohamatum (Blackburn, 1884)</td>
<td>Black-knees damselfly</td>
</tr>
<tr>
<td>ORTHOPTERA: GRYLLIDAE</td>
<td></td>
</tr>
<tr>
<td>Caconemobius varius Gurney & Rentz, 1978</td>
<td>Kaumana cave cricket</td>
</tr>
<tr>
<td>Thaumatogryllus cavicola Gurney & Rentz, 1978</td>
<td>Volcanoes cave cricket</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCIENTIFIC NAME</th>
<th>Relative abundance</th>
<th>Collection method</th>
<th>Status and Distribution within the Hakalau Forest National Wildlife Refuge</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS: ARACHNIDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORDER: ARANEAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAMILY: Tetragnathidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetragnatha quasimodo</td>
<td>C</td>
<td>G</td>
<td>X</td>
</tr>
<tr>
<td>Gillespie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetragnatha sp. 1</td>
<td>S</td>
<td>G, F</td>
<td>X</td>
</tr>
<tr>
<td>Tetragnatha sp. 2</td>
<td>R</td>
<td>G, F</td>
<td>X</td>
</tr>
<tr>
<td>CLASS: INSECTA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORDER: ODONATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAMILY: Aeshnidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anax strenuus</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hagen, 1867</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coenagrionidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megalagrion calliphya calliphya</td>
<td>R</td>
<td>G</td>
<td>X</td>
</tr>
<tr>
<td>(McLachlan, 1883)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megalagrion hawaiense</td>
<td>R</td>
<td>G</td>
<td>X</td>
</tr>
<tr>
<td>(McLachlan, 1883)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megalagrion amaurodytum peles</td>
<td>S</td>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>(Perkins, 1899)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megalagrion blackburni</td>
<td>R</td>
<td>G</td>
<td>X</td>
</tr>
<tr>
<td>McLachlan, 1883</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORDER: ORTHOPTERA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAMILY: Gryllidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laupala sp. 1</td>
<td>C</td>
<td>G, F</td>
<td>X</td>
</tr>
<tr>
<td>Leptogryllus sp. 1</td>
<td>S</td>
<td>F</td>
<td>X</td>
</tr>
<tr>
<td>Trigonidium spp.</td>
<td>C</td>
<td>F</td>
<td>X</td>
</tr>
<tr>
<td>ORDER: DIPTERA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAMILY: Calliphoridae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyscritomyia sp. 1</td>
<td>R</td>
<td>G</td>
<td>X</td>
</tr>
<tr>
<td>Muscidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lispocephala sp. 1</td>
<td>R</td>
<td>G</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 5. (Continued)

<table>
<thead>
<tr>
<th>ARTHROPOD FAUNA</th>
<th>Status and Distribution within the Hakalau Forest National Wildlife Refuge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipunculidae</td>
<td></td>
</tr>
<tr>
<td>Cephalops sp.</td>
<td>R</td>
</tr>
<tr>
<td>Tipulidae</td>
<td></td>
</tr>
<tr>
<td>Gonomyia hawaiensis</td>
<td>R</td>
</tr>
<tr>
<td>Alexander, 1919</td>
<td></td>
</tr>
<tr>
<td>ORDER: HETEROPTERA</td>
<td></td>
</tr>
<tr>
<td>FAMILY: Miridae (Leaf bugs)</td>
<td></td>
</tr>
<tr>
<td>Kamehameha lunalilo</td>
<td>R</td>
</tr>
<tr>
<td>Kirkaldy, 1902</td>
<td></td>
</tr>
<tr>
<td>Koanoa hawaiensis</td>
<td>F</td>
</tr>
<tr>
<td>(Kirkaldy, 1902)</td>
<td></td>
</tr>
<tr>
<td>Orthotylus sp.</td>
<td>S</td>
</tr>
<tr>
<td>Nabidae: (damselbugs)</td>
<td></td>
</tr>
<tr>
<td>Nabis lusciosus</td>
<td>C</td>
</tr>
<tr>
<td>White, 1877</td>
<td></td>
</tr>
<tr>
<td>Nabis oscillans</td>
<td>S</td>
</tr>
<tr>
<td>Blackburn, 1888</td>
<td></td>
</tr>
<tr>
<td>Reduviidae (Assassin bugs)</td>
<td></td>
</tr>
<tr>
<td>Nesidiolestes selium</td>
<td>R</td>
</tr>
<tr>
<td>Kirkaldy, 1902</td>
<td></td>
</tr>
<tr>
<td>Saicella mulli</td>
<td>R</td>
</tr>
<tr>
<td>Polhemus, 2000</td>
<td></td>
</tr>
<tr>
<td>ORDER: LEPIDOPTERA</td>
<td></td>
</tr>
<tr>
<td>FAMILY: Crambidae</td>
<td></td>
</tr>
<tr>
<td>Omiodes (=Hedylepta) prichardii</td>
<td>R</td>
</tr>
<tr>
<td>Geometridae</td>
<td></td>
</tr>
<tr>
<td>Prognostola gymnopis</td>
<td>S</td>
</tr>
<tr>
<td>Meyrick, 1899</td>
<td></td>
</tr>
<tr>
<td>Scotorythra arboricolens</td>
<td>C</td>
</tr>
<tr>
<td>Butler, 1883</td>
<td></td>
</tr>
<tr>
<td>Scotorythra artemidora</td>
<td>C</td>
</tr>
<tr>
<td>Meyrite, 1899</td>
<td></td>
</tr>
<tr>
<td>Scotorythra epixantha</td>
<td>R</td>
</tr>
<tr>
<td>(Perkins, 1901)</td>
<td></td>
</tr>
<tr>
<td>Scotorythra gonaiastis</td>
<td>R</td>
</tr>
<tr>
<td>Meyrick, 1899</td>
<td></td>
</tr>
<tr>
<td>Scotorythra paludicola,</td>
<td>R</td>
</tr>
<tr>
<td>(Butler, 1879)</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. (Continued)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scotorythra rara, (Butler, 1879)</td>
<td>C</td>
<td>MV</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Scotorythra new sp. 7, Heddle, in press.</td>
<td>R</td>
<td>MV</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scotorythra new sp. 13, Heddle, in press.</td>
<td>R</td>
<td>MV</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORDER: LEPIDOPTERA</td>
<td>FAMILY: Noctuidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrotis epicremna Meyrick, 1899</td>
<td>R</td>
<td>MV</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haliophyle euclidias (Meyrick, 1899)</td>
<td>C</td>
<td>MV</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haliophyle flavistigma (Warren, 1913)</td>
<td>R</td>
<td>MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haliophyle ignita Warren, 1912</td>
<td>R</td>
<td>MV</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudaletia macrosaris (Meyrick, 1899)</td>
<td>R</td>
<td>MV</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudaletia sp. A (“big red”) undescribed</td>
<td>R</td>
<td>MV</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oecophoridae</td>
<td></td>
</tr>
<tr>
<td>Thyrocopta sp.</td>
<td>C</td>
<td>MV</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORDER: COLEOPTERA</td>
<td>FAMILY: Aglycyderidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proterhinus spp.</td>
<td>S</td>
<td>F</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anobiidae</td>
<td></td>
</tr>
<tr>
<td>Xyletobius sp. 1</td>
<td>S</td>
<td>F</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carabidae</td>
<td></td>
</tr>
<tr>
<td>Bembidion spp.</td>
<td>S</td>
<td>F</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackburnia sp. 1</td>
<td>S</td>
<td>F</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackburnia sp. 2</td>
<td>S</td>
<td>F</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackburnia sp. 3</td>
<td>S</td>
<td>F</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mecyclothorax sp. 1</td>
<td>R</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. (Continued)

<table>
<thead>
<tr>
<th>ARTHROPOD FAUNA</th>
<th>Status and Distribution within the Hakalau Forest National Wildlife Refuge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerambycidae</td>
<td></td>
</tr>
<tr>
<td>Plagithmysus vicinus vicinus Sharp, 1896</td>
<td>C</td>
</tr>
<tr>
<td>Curculionidae</td>
<td></td>
</tr>
<tr>
<td>Achalles sp. 1</td>
<td>S</td>
</tr>
<tr>
<td>Oodemas sp. 1</td>
<td>F</td>
</tr>
<tr>
<td>ORDER: HYMENOPTERA</td>
<td></td>
</tr>
<tr>
<td>FAMILY: Ichneumonidae</td>
<td></td>
</tr>
<tr>
<td>Enicospilus sp. A</td>
<td>S</td>
</tr>
<tr>
<td>Enicospilus sp. B</td>
<td>S</td>
</tr>
<tr>
<td>Enicospilus sp. C</td>
<td>S</td>
</tr>
<tr>
<td>Sphecidae</td>
<td></td>
</tr>
<tr>
<td>Ectemnius sp. A</td>
<td>R</td>
</tr>
<tr>
<td>ORDER: NEUROPTERA</td>
<td></td>
</tr>
<tr>
<td>FAMILY: Chrysopidae</td>
<td></td>
</tr>
<tr>
<td>Anomalocheysa sp. A</td>
<td>R</td>
</tr>
<tr>
<td>Hemerobiidae</td>
<td></td>
</tr>
<tr>
<td>Micromus spp.</td>
<td>S</td>
</tr>
<tr>
<td>CLASS: DIPLOPODA</td>
<td></td>
</tr>
<tr>
<td>FAMILY: Cambalidae</td>
<td></td>
</tr>
<tr>
<td>Nannolene sp. 1</td>
<td>S</td>
</tr>
</tbody>
</table>

Abundance: R=rare, S=scarce, C=common. Collection method: B=beating sheet, F=water based pyrethrum fog, G=general collecting, H=host search, M=Malaise trap, MV=mercury vapor bulb.
Figure 2. Pua Akala Arthropod Collection Sites

- General
- MV Bulb
- Malaise Trap
- Lindgren Funnel Trap
Figure 3. Maulua Arthropod Collection Sites

- = Fog = General = MV Bulb = Malaise Trap

= Lindgren Funnel Trap

Hakalau Arthropod Survey
Figure 4. Pua Akala Awehi Stream Collection Sites

- = Fog = General = MV Bulb
Figure 5. Pua Akala Tract Fogging Sample Sites

● = Fog