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COVER

Frame captures from videogrammetry transects conducted off Portlock, Oahu. Parallel laser
beams (green dots) superimpose a measurement scale on the flank of fish and allow size
estimation.
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EXECUTIVE SUMMARY

Attempts to manage exploited fish populations ideally incorporate information on the life history
and demographic structure of the target species. In Hawaii, a complete set of the necessary
information does not seem to exist for any one reef-fish species, making it nearly impossible to
predict the outcome of new management strategies or evaluate the effectiveness of existing ones.
We attempted to generate or find information on abundance, growth, sex-specific size-at-
maturity, length-specific sex ratios, size-fecundity relationships, age structure, and forces of
mortality for three exploited reef fishes (Centropyge potteri, Dascyllus albisella, and Parupeneus
multifasciatus). This project included a novel approach to the study of reef fish biology:
Estimation of mortality rates inside and outside a no-take marine reserve allowed fishery-
independent estimation of natural and fishing mortality.

We used the life history and demographic information in a Ricker production model to predict or
evaluate management strategies by examining effects on biomass and egg production. Low
sample size prevented estimation of natural mortality for Dascyllus albisella, thus preventing
production estimates for this fish inside the no-take marine reserve. Results varied between the
other two species. The Centropyge potteri population inside Hanauma Bay (no-take reserve)
appears to produce approximately triple the biomass, number of individuals, and number of eggs
per reproductive event relative to the population in a nearby fished area (Maunalua Bay). For
this species, the no-take reserve produces the raw material necessary for fishery enhancement in
an equal-sized nearby area. The Parupeneus multifasciatus population in the same no-take
reserve appears to produce roughly half the biomass and eggs of the population in a nearby
fished area. Because of low abundance and high mortality inside the no-take reserve, the
population there does not produce the raw materials necessary for fishery enhancement in
Maunalua Bay. This study appears to be the first to use production estimates to empirically
evaluate the fishery enhancement value of a no-take marine reserve.

We used the same production model to predict the effects of varying size limits and fishing
pressure on the sex-changing Centropyge potteri. Results suggest a lower size limit protecting
all females (~90 mm TL) would maximize egg production. Fishing pressure on individuals
larger than 90 mm can increase. This would maintain maximum egg production, but also
increase total yield, and drive the sex-ratio closer to the species average Because of
counterintuitive mortality rates (i.e., higher mortality in the reserve) generated for Parupeneus
multifasciatus, we could not realistically model the effects of various fishing practices for this
species but did determine that current fishing regulations appear to protect most mature females.
The broad geographic range over which life-history-based fishing practices influence a fishery
should be considered when evaluating the relative merits of management strategies.



INTRODUCTION

Sound fishery management decisions require a variety of life history and demographic
information. The lack of one or more crucial bits of information can prevent proactive regulation
and cloud evaluation efforts. Unfortunately, a complete set of life history and demographic
information for any exploited Hawaiian coral reef fish species is virtually non-existent.

Often, the generation of life-history parameters is viewed as time-consuming and costly.
Further, estimating demographic parameters is often fraught with unrealistic assumptions
associated with fishery-dependent techniques.

We suggest that generating adequate life history and demographic information can be timely and
cost-effective. Further, we suggest that the combination this life history information with the
application of non-destructive, highly accurate size estimation methods in Hawaii’s system of
no-take marine reserves represents an unexploited and extremely valuable opportunity to
generate fishery independent estimates of natural, and by extension, fishing mortality.

To demonstrate the feasibility of this approach, the goal of this project was to, within one year:
1) describe the growth and reproductive parameters for three coral reef fish species, 2) describe
demographic patterns for each species inside and outside of a no-take marine reserve to estimate
natural and fishing mortality, and 3) evaluate the fishery enhancement potential of various
management techniques.

METHODS
1. Study System

Species

We studied three exploited species with a variety of life-history characteristics. The Potter’s
angelfish (Centropyge potteri) is an endemic, small-bodied, territorial, broadcast spawning
species and is the number one aquarium fish collected on Oahu (DAR Records). The domino
damselfish (Dascyllus albisella) is also a part of the ornamental fishery, but catch records
suggest the fishery impact on this species may be negligible. Like the angelfish it is endemic,
small-bodied, and site-attached, but rather than spawning in the water column, it lays demersal
eggs in a nest which is typically guarded by males. Our third study species, the many-barred
goatfish (Parupeneus multifasciatus), is targeted by commercial and recreational food fisheries,
and is usually the most abundant goatfish wherever it occurs (Randall 2007). Creel surveys in
Waikiki indicate it ranks second in number of fish caught by all methods (Meyer 2003). Itisa
broadcast spawner, but differs from the other two species in having a broader geographic
distribution from Cocos-Keeling Islands in the Indian Ocean to Norfolk Island in the South
Pacific and Hawaii in the North Pacific (Randall 2007) and being larger-bodied and less site-
attached.



Sites

The majority of life history analysis was performed on specimens collected from the forereef of
Kaneohe Bay, Oahu. This area can be difficult to access due to its exposure to trade winds (and
resulting large waves). As such, fishing pressure is low (DAR catch records show that this is
part of the least heavily fished region on Oahu for Centropyge potteri), and we assumed fishes
collected in this area were from unfished populations. Where necessary (e.g., reproductive
analysis of Parupeneus multifasciatus, below) Hawaii-caught specimens from museum and
university collections were also analyzed.

Demographic patterns were described at Hanauma and Maunalua Bays. These sites represent
our best efforts to choose appropriate comparison sites for the three study species. Hanauma Bay
encloses approximately 380,589 m” and fishing has been prohibited for 40 years. Our
comparison site occupies an equivalent area in Maunalua Bay, adjacent to Portlock (N 21°
15'41.37" W, 157° 42'41.43"). This site lies approximately 3.2 km westward along the coast
from Haunama Bay and contains, at least superficially, similar habitat types and depth
distributions. Ornamental-catch records maintained by the Division of Aquatic Resources show
that the majority of Potter’s angelfish collected on Oahu come from this area. This shoreline is
also a popular hook-and-line and spear-fishing location.

2. Life History Analysis

We collected specimens using nets or spears while on SCUBA from the forereef of Kaneohe
Bay. Specimens were stored on ice until processing. We measured, to the nearest 0.5 mm,
standard length, the distance between the origins of the dorsal and pelvic fins, and the length
from the anterior-most part of the head to the end of the middle caudal rays. The latter
measurements correspond to total length for Centropyge potteri and fork length for Dascyllus
albisella and Parupeneus multifasciatus. We then measured total body mass (to 0.1 g), removed
saccular otoliths (saggitae), and fixed gonads in Dietrich’s fixative (60% distilled water, 28%
absolute ethanol, 10% formaldehyde, and 2 % glacial acetic acid). Morphometric relationships
were described using linear regression for lengths and a 2-parameter power function for length
vs. weight. Growth and reproduction were described following the methods in Longenecker and
Langston (2006), summarized below.

Growth

We prepared a single, transverse section of each saggita by mounting the otolith, lateral side
down, on a glass microscope slide in thermoplastic glue (Crystal Bond #509 from Electron
Microscopy Sciences, Hatfield, PA) then removing a section containing the core using an Isomet
11-1180 low-speed saw (Beuhler, Lake Bluff, IL). We affixed this section to a glass microscope
slide, a cut side down, with thermoplastic glue; ground close to the core using a series of 600 and
1500 grit sandpaper; then polished the section with 0.3 and 0.05 pm alumina slurry on felt. We
etched the polished surface with a 2.5% solution of unbuffered EDTA for 4-7 min, then rinsed
with deionized water. We dissolved the thermoplastic glue with acetone and mounted prepared
otolith sections on aluminum stubs. We coated these sections with a gold-palladium film in a
Hummer II sputtercoater (Technics, Alexandria, VA), and viewed them on a Hitachi S-800 field
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emission scanning electron microscope (Hitachi High Technologies America, Schaumburg, IL).
We used Photoshop 7.0 (Adobe Systems, San Jose, CA) to examine digital images of the otolith
sections (see Figure 1). Otolith preparations rarely included the primordium, so total number of
rings were estimated by counting the number of increments past an easily identifiable check
mark for each species, and adding an assumed number of days for the region inside the mark.
For Centropyge potteri, the check mark corresponded to larval duration reported by Thresher &
Brothers (1985), so we added the average value of 36 d. The mark on Parupeneus multifasciatus
corresponded to 21 days (as indicated by counts on preparations including the primordium).

Figure 1. Scanning electron micrograph of a prepared P. multifasciatus otolith. We assigned a total age of 219 days
to the fish that produced this otolith.

We assumed that each otolith increment represented one day, plotted age versus length, and
described the relationship between these variables using a 3-parameter power function. We used
this relationship to predict fish length for each otolith analyzed and used these data to construct a
vonBertalanffy growth curve following the methods outlined in Everhart & Youngs (1992).
Briefly, we estimated L., (asymptotic length, or the length at which growth rate is theoretically
zero) using a Ford-Walford plot, whereas t, and K were estimated from a plot of In (L, — 1¢)
versus estimated age (t) = the age when length is theoretically zero; K = rate of growth toward
L; I; = the length at age t).

Reproduction

We dehydrated Dietrichs’-preserved gonads in a graded ethanol series, embedded them in glycol
methacrylate (JB-4 Embedding Kit from Electron Microscopy Sciences, Hatfield, PA), and
sectioned them at 2 - 5 um on a rotary microtome (Sorvall Products, Newtown, CT) fitted with a
glass knife. We affixed these sections to glass microscope slides, stained them in toluidine blue
or hematoxylin and eosin and examined them for evidence of reproductive maturity. We
classified ovaries according to Wallace & Sellman (1981) and testes according to Nagahama
(1983). We considered female fish mature with the onset of vitellogenesis, and males mature
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when the testes contained visible spermatozoa. We report size at sexual maturity as the size at
which a regression equation (3-parameter, sigmoidal) of percent mature individuals in each 1
mm size class versus standard length indicates 50% of individuals are mature.

Ovaries selected for batch fecundity were weighed to the nearest 0.001 g on a digital
microbalance. We collected 3-4 subsamples (chosen randomly from right or left lobe of ovary)
of tissue (8-15 mg each) from the anterior, middle, and posterior of the gonad and weighed these
to the nearest 0.01 mg on a CAHN 28 electrobalance. For P. multifasciatus, A biopsy of the
remaining ovarian tissue was examined histologically (see above) to verify that the ovary
contained vitellogenic or mature oocytes. We estimated batch fecundity from the sub-samples
using the oocyte size-frequency method (Hunter et al. 1985; MacGregor 1957), assuming the
largest mode of yolked oocytes formed the next spawning batch. We used a 2-parameter power
equation to describe the relationship between batch fecundity and standard length.

3. Demographic Analysis

We estimated density, and ultimately abundance by using closed-circuit rebreathers to swim two-
meter-wide belt transects along a compass heading and tallying all sightings of our study species.
The start and stop points of each transect were recorded on a GPS unit towed on a surface float.
Our goal was to uniformly survey each area, however currents often caused us to deviate from
the planned course (Figure 2). For all transects, we assume that we swam in a straight line
between the actual beginning and end points.

We used laser videogrammetry to describe the size distribution of the three study species at each
site (Figure 3). Here, a video camera fitted with parallel laser beams was used to capture images
of individuals when they were oriented perpendicular to the laser beam axes. We then reviewed
the video with Windows Movie Maker® and captured still frames where both lasers appeared on
the fish. Because the beams are parallel, the lasers superimpose a reference scale on the side of
the fish, allowing length estimates by solving for equivalent ratios. Still images were analyzed
using ImagelJ (National Institutes of Health). In most cases, we were able to estimate total or
fork length. However on occasion, the only reliable length estimate was “body depth” (the
distance between the origins of the dorsal and pelvic fins). In these cases, we used morphometric
relationships to convert this measurement to total or fork length.

For each species, we estimated mean length at each site. We also used length-weight
relationships to estimate mean weight at each site.
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Figure 2. Sampling areas in Hanauma Bay, a no-take marine reserve (right) and Maunalua Bay, an area open to
fishing (left). Yellow lines indicate site boundaries, and white lines represent transects. Image from Google Earth.

Figure 3. Laser videogrammetry, a non-destructive technique to estimate fish length. (a) a diver operates a video
camera fitted with two parallel laser beams. (b) the laser beams superimpose a measurement scale on the side of D.
albisella.
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Mortality

We used vonBertalanffy growth equations to convert lengths to age estimates and constructed an
age distribution for each species at each site. We then used regression analysis to describe the
logarithm of the frequency of each age class as a function of age, and obtained total mortality (Z)
from the negative slope of the line (Everhart & Youngs 1992). Because fishing is prohibited in
Hanauma Bay, total mortality at this site is equivalent to natural mortality (M). At Maunalua
Bay, total mortality is the sum of natural (M) and fishing mortality (F). Fishing mortality at
Maunalua Bay was estimated by subtracting total mortality at Hanauma Bay from total mortality
at Maunalua Bay. That is:

V4 Hanauma Bay — M
Z Maunalua Bay — F+M

Therefore:
Z Maunalua Bay — Z Hanauma Bay — (F + M) -M=F
4. Production Modeling

We used vonBertalanffy growth equations, fishing and natural mortality estimates, length-weight
regressions, size-at-maturity estimates, sex ratios, and size vs. batch fecundity relationships in a
Ricker production model to estimate annual biomass production in kilograms and egg production
per reproductive event at each site. The model was built assuming that mortality is constant over
all age classes, including those smaller than used for mortality estimates. Production estimates
were based on the hypothetical number of recruits (i.e., frequency of the smallest age class) that
would result in the estimated frequency of individuals in the smallest age class used for mortality
estimates class frequency (i.e., proportion of individuals in age class from videography times the
estimated total population size). We then used the model to examine the effects of changing
size limits and fishing pressure.

RESULTS

1. Life History Analysis

Morphometric relationships

We examined 195 Centropyge potteri, 136 Dascyllus albisella, and 96 Parupeneus
multifasciatus to obtain morphometric relationships. All length-to-length relationships were
linear, whereas length-weight relationships were best described by a two-parameter power
function where weight was an approximately cubic function of length (

Table 1).
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Table 1. Length conversions for three coral reef fishes. “TL” = the measurement used for videogrammetry analysis
(total length for C. potteri, and fork length for D. albisella and P. multifasciatus; “BD” = the distance between
dorsal and pelvic fin origins. Lengths are in mm, weight in g.

Species “TL” to SL “BD” to “TL” “TL” to weight
C. potteri SL=0.93+0.79(TL) TL=3.41+228BD) Wt=1.73-105(TL)*"
D. albisella SL=1.18+0.78(FL) FL=1.38+1.91(BD) Wt=1.38-104(FL)>*

P. multifasciatus SL=-1.98 +0.92(FL) FL=16.96+3.32(BD) Wt=4.91-106(FL)**

Growth

We obtained 15 readable otoliths from Centropyge potteri. A vonBertalanffy growth equation
fitted the observed data points well (Figure 4), with the predicted asymptotic length
approximating the reported maximum length of 130 mm (Randall 2007). This species appears to
have a maximum life span of approximately two years. Hill & Radtke (1988) described the
growth of a Dascyllus albisella population from Johnston Atoll using annual growth increments,
reporting a maximum life span of about 12 years. We use their growth equation for subsequent
analyses (l; = 130[1 — ¢ 0814667y We obtained 13 readable otoliths from Parupeneus
multifasciatus. We did not find a tight fit between a vonBertalanffy growth equation and
observed data points. Rather, the growth curve ran between what appears to be two distinct data
series (Figure 5). We do not know the sex of individuals from which otoliths were obtained, so
cannot determine whether the species exhibits sex-specific growth rates. The predicted
asymptotic length is very close to the observed maximum length of 300 mm (Randall 2007).
The specimens we examined appear to have lived to a maximum of approximately two years.
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Figure 4. A scatterplot of age (assuming each otolith increment is equivalent to one day) versus total length for
Centropyge potteri. The curve represents the resulting vonBertalanffy growth equation: 1, = 127[1-¢™* 08639,

Reproduction

Centropyge potteri has a rather complicated reproductive mode (Table 2). As protogynyous
hermaphrodites (Lutnesky 1992; 1994; 1996), all males are derived from previously mature
females, and the sex ratio varies by habitat, location (Lobel 1978) and body size.

We histologically examined gonads from 37 individuals to estimate size-at-maturity and sex
ratio. Of these, 22 gonads were ovaries, 11 were testes, and four were ovotestes (Figure 6).
Individuals with testes were significantly larger than those with ovaries (T-test, p<0.05), but did
not differ significantly with those with ovotestes. Based on our analysis, fifty percent of
individuals (as 100% females) mature at 54 mm TL. One-hundred percent of individuals between

54 and 67 mm TL are female, and the sex ratio between 68 and 89 mm can be described by the
equation:

% Females = 405.5 — 4.439(TL)
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One-hundred percent of individuals over 89 mm TL are male, with 50% of males maturing at 84
mm.
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Figure 5. A scatterplot of age (assuming each otolith increment is equivalent to one day) versus total length for

Parupeneus multifasciatus. The curve represents the resulting vonBertalanffy growth equation: 1, =303[1-¢
0‘00207(t+49.4)]

Nine C. potteri ovaries were deemed appropriate for batch fecundity analysis. The largest size-
mode of non-hydrated yolked (vitellogenic) oocytes ranged from 437.5-525 pm (mean 479 pm)
which correspond to late vitellogenesis and final maturation (Collier et al. 2001). One individual
contained hydrated oocytes (512-662 um, mean 568); however, these were not included in the
estimate as several had already been ovulated. Estimated fecundity ranged from 270 (for a 57

mm female) to 1,056 (75 mm female) eggs per spawn and is described by a power function
(Table 2).

Reproduction in the polygynous Dascyllus albisella has been studied extensively, and we use
existing information for subsequent analyses. Asoh et al. (2001) report that the Hawaiian
domino damselfish is a non-functional protogynous hermaphrodite: all males begin life with
ovarian tissue but never shed eggs. Males mature at a larger size than females (Asoh et al.
2001), and the proportion of females in any given size class varies, but averages 62% (Stevenson
1963). Spawning occurs year-round, with peak activity from June and September (Danilowicz
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1995). During this period, individual females spawn every 8.3-8.4 days, on average (Asoh
2003). Remarkably, batch fecundity is a function of length raised to the seventh power
(Stevenson 1963). Data from Asoh et al. 2001 suggest the percent of females in a size class can
be described by the equation:

% Females = 109.2 — 0.5349(FL)

Figure 6. Histological sections of C. potteri gonads (Toluidine Blue). Ovaries (left) consisted of parallel lamellae
surrounding a central lumen (arrow). Several oocyte stages were present in reproductively active females indicating
that this species has group-synchronous oocyte development. Ovotestes (center) consisted of mixed ovarian and
testicular tissue and indicate individuals in transition from female to male. Individuals with ovotestes were
considered males if the testicular portion contained visible spermatozoa and females if they contained vitellogenic
oocytes. Testes (right) consisted of lobules or spermatogenic tissue. Several testes retained a non-functional lumen
(arrow) suggesting that they had been derived secondarily from ovaries.

We could find little published information on the reproductive biology of the goatfish
Parupeneus multifasciatus. Lobel (1978) observed spawning of P. multifasciatus in March, two
days before the full moon, and briefly described spawning behavior. The Hawaii Division of
Aquatic Resources reports the size at maturity to be 7.3 inches (185 mm FL) and has instituted a
legal catch size of 7 inches (178 mm FL).

We histologically examined gonads from 50 individuals, of which 20 were ovaries and 30 were
testes (Figure 7). As with C. potteri males were significantly larger than females (T-test p<0.05),
although we found no histological evidence of hermaphroditism. This leaves the possibility that
the size differences may instead reflect differences in growth rates between the sexes. The size at
which 50% of individuals are mature also differs between sexes, with males maturing at a larger
size than females (Table 2). Further, sex ratio varies in a predictable way throughout the
reproductive size range of the species and can be described by the equation:

% Females = 141.3 — 0.6167(FL)

One-hundred percent of individuals larger than 225 mm FL are male.
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Of the 20 ovaries we examined, only five contained late stage III (vitellogenic) or stage IV
(mature) oocytes. Four of these individuals were collected between months of March to July and
the fifth collected in November. Four of the five ovaries were deemed suitable for batch
fecundity analysis. In these individuals, the largest size mode of oocytes ranged from 285-390
um (mean 340 um). Histological sections taken from the same ovaries indicate that these
corresponded to stage IV (maturation) of Wallace and Selman (1981). Ovulated oocytes, found
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Figure 7. Histological sections of P. multifasciatus gonads (Hematoxylin & Eosin). Ovaries of mature females (left)
contained several stages including primary growth (I) cortical vesicle stage (II) early (III A) and late (III B)
vitellogenesis, and maturation (not shown). Testes (right) were lobular and lacked an internal lumen.

in the ovarian lumen of one specimen, ranged from 330 to 450 um in diameter (mean 389 pum).
Together these data support the use of the above size class to estimate batch fecundity in this
species. Estimated fecundity of P. multifasciatus ranged from 5,479 (155 mm specimen) to
21,530 (193 mm specimen). The latter was estimated from a museum specimen in which the
ovary was ruptured during removal and thus may be inaccurate estimate. Due to the low number
of samples, we could not generate a size-fecundity curve necessary for the production model.
Instead, we used a curve for P. ciliatus (EI-Agamy 1990), a similar-sized goatfish from Qatar.
Figure 12 shows the fecundity estimates from the four individuals of P. multifasciatus along with
the curve for P. ciliatus.

Demographic Analysis

We conducted 17 transects covering a total 13,520 m* in Hanauma Bay, whereas 23 transects
covering a total 12,816 m? were conducted in Maunalua Bay. Of the three target species, we
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recorded a total 585 fish. In Hanauma Bay we saw 48 C. potteri, 13 D. albisella, and 162 P.
multifasciatus. In Maunalua Bay we saw 44 C. potteri, 74 D. albisella, and 244 P.
multifasciatus. Estimates of density and abundance at each site are presented in

Table 3. Of the three study species, only Centropyge potteri occurs in higher numbers in the no-
take marine reserve (Hanauma Bay). A Mann-Whitney test on weighted densities of this species
indicates that values are significantly different.

Table 2. Reproductive parameters for three reef fish species. Ls, equals the size at which 50% of a given size class
are mature. TL = total length; FL = fork length. Batch fecundity estimates are based on lengths in mm.

Species Female L5y Male Ls Sex Ratio Batch Fecundity1
C. potteri 54mmTL 84mmTL varies predictably # Eggs =0.0118(TL)*>"°
D. albisella 63 mm FL®> 95mmFL*> varies predictably’ # Eggs =4.48:10""'(FL)"**

P. multifasciatus 145 mm FL 152 mm FL varies predictably # Eggs = 0.0018(FL)**?

(1) Results for D. albisella adapted from Stevenson 1963. (2) Adapted from Asoh et al, 2001.

Regression analysis of fish length estimated from laser videogrammetry versus actual fish length
indicates a nearly 1:1 relationship throughout the size range of fish we captured on video during
this study. Further, the prediction interval suggests 95% of our estimates will be within 0.5 cm
of the actual fish length (Figure 8).

We captured on video a total 419 fishes suitable for size estimation. In Hanauma Bay we
recorded 25 C. potteri, 9 D. albisella, and 126 P. multifasciatus. In Maunalua Bay we recorded
44 C. potteri, 65 D. albisella, and 150 P. multifasciatus. The information generated by laser
videogrammetry allowed estimates of average lengths and weights at each site (

Table 3). Again, only values for Centropyge potteri were higher in the no-take marine reserve
(Hanauma Bay). T-tests indicate that average length and weight for C. potteri are significantly
higher in the reserve area.

Mortality plots are presented in Figure 9—Figure 11, and estimates of total, natural, and fishing
mortality are presented in

Table 3. Sample size for Centropyge potteri was low, and resulting mortality estimates should be
viewed with caution. However, as expected, we did find that total mortality in the no-take
marine reserve (Hanauma Bay) was lower than that in the area open to ornamental collecting
(Maunalua Bay), thus allowing fishery-independent estimation of fishing mortality. Sample size
for Dascyllus albisella in the no-take marine reserve (Hanauma Bay) was too low to generate a
mortality curve. Although total mortality was estimated for the open site (Maunalua Bay), lack
of a natural mortality estimate prevented the generation of a fishing mortality estimate. Sample
size for Parupeneus multifasciatus was suitably high for mortality estimates. However, contrary
to expectation, total mortality in the no-take reserve
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(Hanauma Bay) was higher than total mortality in the open site (Maunalua Bay). Calculation of
a fishing mortality estimate would have resulted in a negative value (-0.1413), an unrealistic
value for a site where fishing is known to occur.

Table 3. Estimates of density, abundance, length and weight (£SD) for three species in a no-take marine reserve

(Hanauma Bay) and a fished area (Maunalua Bay). TL = total length, FL = fork length.

Species Estimate Haunama Bay Maunalua Bay
C. potteri
Density (m™) 0.00355(0.00743) 0.00328(0.00538)
Abundance (n) 1351 1247
Mean TL (mm) 84.3(12.1) 70.0(12.8)
Mean Weight (g) 19.3(8.0) 11.2(6.6)
D. albisella
Density (m™) 0.00096(0.00253) 0.00577(0.01659)
Abundance (n) 366 2198
Mean FL (mm) 97.5(13.6) 102.0(18.3)
Mean Weight (g) 30.7(9.5) 35.4(14.8)
P. multifasciatus
Density (m™) 0.01198(0.00627) 0.01904(0.03532)
Abundance (n) 4560 7246
Mean FL (mm) 138.7(32.1) 148.9(35.6)
Mean Weight (g) 49.3(40.5) 62.8(53.3)
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Figure 8. The relationship between estimated and actual lengths of specimens “captured” on videotape for laser
videogrammetry and subsequently speared. The prediction interval suggests that 95% of length estimates will be
within 0.5 cm of actual fish length.
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Figure 9. Mortality plots for Centropyge potteri. Age Class 1 is composed of fishes 28 — 45 weeks old, only data
represented by filled circles were used for regression analysis.
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Figure 10. Mortality plot for Dascyllus albisella in Maunalua Bay, open to fishing. Due to low sample size, a plot
could not be constructed for Hanauma Bay, a no-take marine reserve. Age Class | is composed of fishes 1 —4 years
old, only data represented by filled circles were used for regression analysis.
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Figure 11. Mortality plots for Parupeneus multifasciatus. Age Class 1 is composed of fishes 7 — 22 weeks old.
This species has a size limit of 178 mm FL, fishes can legally be caught beginning at Age Class 3, only data
represented by filled circles were used for regression analysis.

Table 4. Mortality estimates for three reef fish species. Fishing mortality could not be determined for D. albisella
due to low sample size in the no-take marine reserve (Hanauma Bay), or for P. multifasciatus because total mortality
appeared to be lower in the open area (Maunalua Bay), which would have resulted in negative fishing mortality.

Species Interval Zxanauma (M) Zmaunaina (FF+M) F

C. potteri 16 wk 0.3079 0.3891 0.0812
D. albisella L 0.4511 e
P. multifasciatus 16 wk 0.4439 0.3025 e
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2. Production Modeling

The size-fecundity relationship for Parupeneus multifasciatus presented in Table 2 is based on a
low sample size. We opted to use a relationship for a congener (El-Agamy 1990), which may
systematically overestimate reproductive output (Figure 12). Production values under current
mortality estimates are presented in Table 5. Sites could not be compared for Dascyllus albisella
because too few individuals were observed in the no-take reserve to allow mortality estimates.
Values for number (the unit of concern for ornamental collectors), biomass, and egg production
are all higher in the no-take reserve for Centropyge potteri. Values for Parupeneus
multifasciatus show the opposite pattern. Biomass (the unit of concern to fishers) and egg
production were lower in the no-take reserve.

Figure 13 provides a visualization of one modeling effort predicting the effects of imposing
various size limits on the Centropyge potteri fishery, but holding fishing mortality at current
levels. Additional models, also investigating the effects of size limits, but with increased fishing
pressure were also built. These suggested that both yield in numbers and reproductive output can
be increased if individuals below 90 mm TL are not collected. Models for D. albisella and P.
multifasciatus could not be constructed due to lack of natural mortality estimates and counter
intuitively low fishing mortality estimates, respectively.

50000

— — — P. multifaciatus
P. ciliatus

40000 -

30000 -

20000 -

Batch Fecundity (# eggs)

10000 ~

0 T T T T T T T T T T
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Figure 12. A comparison of relationships between length and batch fecundity for P. multifasciatus and P. ciliatus.
Because few gravid females were obtained during this study, we used the P. ciliatus relationship (adapted from El-
Agamy 1990) for production modeling.

26



Table 5 Production estimates for three species in a no-take marine reserve (Hanauma Bay) and a fished area
(Maunalua Bay). Egg production estimates assume each mature female spawns a single time (i.e., values do not
reflect spawning frequency).

Species Estimate Hanauma Bay Maunalua Bay
C. potteri

n 3149 1024

kg 64.6 19.7

# eggs 1,024,873 337,474
D. albisella

0 2971

ke e 104.5

#eggs e 3,532,421
P. multifasciatus

kg 959.6 2,656.8

# eggs 24,290,147 44,938,763
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Figure 13. Yield (in green) versus reproductive output (in blue) as a function of size limits for Centropyge potteri in
a fished area with constant fishing mortality. The leading edge of each plot corresponds to the smallest size of entry
into the fishery, in this case 68 mm. Each plot then fades back from the reader, with each more or less horizontal
line representing larger sizes. The relatively vertical lines represent the upper size limit. Estimated yield and
reproductive output under current fishing pressure, in this case fishing mortality of 0.0812 from 68 through 108 mm,
is indicated by the upper right point on the yield plot (83 individuals per cohort) and the lower right of the
reproductive output plot (337,474 eggs when each female in a cohort reproduces once per size class).

DISCUSSION

The overarching goal of this project was to demonstrate that the life history and demographic
information necessary to evaluate fishery management strategies can be obtained quickly and
inexpensively. We attempted to do so by generating data and modeling production for three
common reef fish species. The results presented above were accomplished in a single person-
year. Importantly, this time period includes project initiation and the setbacks associated with
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almost any new line of research. We think this project should provide strong motivation for
continued research on the life history and population structure of Hawaii’s exploited reef fishes,
most of which are poorly understood.

Despite the quantity of information generated in a single year, we suspect that in many cases the
quality could have been improved with larger sample sizes and a broader geographic focus.
Several examples deserve mention.

Although we attempted to chemically marking otoliths, we were not able to validate the
periodicity of increment formation in Centropyge potteri or Parupeneus multifasciatus. In both
cases, we assumed the increments we observed were formed on a daily basis. The growth curve
we generated for C. potteri fitted observed data quite well, but the curve for P. multifasciatus did
not. In the latter case, the vonBertalanffy growth curve ran through the middle of what appeared
to be two distinct growth trajectories (Figure 5). We observed sex-based size differences in this
goatfish, as did Randall (2004), but found no histological evidence that the species is
hermaphroditic. These results suggest the possibility of sex-specific growth rates for P.
multifasciatus. Unfortunately, we do not know the sex of individuals that were used in our
growth analysis. Further research is warranted and has the potential to alter apparent mortality
rates.

Mortality estimates for all species were based on the assumptions of constant survival and
constant recruitment. These assumptions cannot be evaluated without larger sample size and/or a
longer study period. Regardless of whether the assumptions are valid, small sample size is
reason for concern about Centropyge potteri mortality estimates. Mortality plots with few age
classes can be profoundly influenced by the presence of one or a few individuals in the largest
age class(es), thus mortality estimates for C. potteri are likely in need of revision. The same
applies to Dascyllus albisella, for which numbers in Hanauma Bay were too low to generate a
preliminary mortality estimate. Results for Parupeneus multifasciatus were counterintuitive,
with mortality appearing higher in a no-take marine reserve (Hanauma Bay) than at a popular
fishing site (Maunalua Bay). Including more sites in videogrammetry survey efforts could alter
these values such that fishery independent estimates of fishing mortality can be obtained and
would certainly provide more confidence in the broader applicability of the results.

Finally, we attempted to model reproductive output at all sites by incorporating size-at-maturity
data, variable sex-ratios, and length-batch fecundity relationship into a Ricker production model.
Despite intensive sampling for gravid Parupeneus multifasciatus, we collected too few
specimens for a reliable length-fecundity regression. We opted to use a published fecundity
equation (El-Agamy 1990) for a congener. This relationship approximated the observed data
distribution for P. multifasciatus, but may have systematically overestimated egg production.
The reproductive output estimates we present assume each mature female spawns only once per
age class. This is certainly incorrect because spawning occurs from December to May for C.
potteri (Lobel 1978; Collier et al. 2003), and year-round for D. albisella, with individual females
spawn every 8.3 - 8.4 days (Asoh 2003) during a peak from June and September (Danilowicz
1995). Actual reproductive output is likely to be higher than estimated, and apparent differences
in site-specific values may change dramatically if spawning periodicity varies by location.
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Given the above caveats, we compared estimated production values in an attempt to better
understand the fishery enhancement potential of a variety of management techniques. The
following discussion should be viewed with appropriate caution.

No-take marine reserves are often promoted as fishery enhancement tools (Russ & Alcala 1996;
Roberts 1997; Roberts & Sargant 2002; Russ et al. 2004; Gaylord et al. 2005; Roberts et al.
2005; Friedlander et al. 2007). Although no-take reserves do have some undisputed fishery
management value (e.g., overexploitation cannot occur in the absence of fishing), whether they
can enhance a fishery, defined here as total fish catch above pre-reserve levels, remains a matter
of some contention (Hilborn 2007). Remarkably, very few empirical analyses of the latter
question exist, and results are often contradictory (Willis et al. 2003; Sale et al. 2005).

At the center of this debate is whether to-take reserves can compensate for lost fishing habitat.
Imagine a simple example where fishing occurs in a well-defined area and the exploited
population is uniformly distributed. If half of this fishing ground is converted to a no-take
marine reserve, the number of catchable fish has suddenly been halved. To compensate for the
lost fishing ground, production in the reserve must double that of baseline values and all
production increase must be exported to the fishable habitat. If either of these events does not
occur, a reserve cannot enhance fish catch.

We were able to estimate production in terms of biomass, # of individuals (depending on the unit
of interest to fishers) and eggs in a no-take marine reserve and a nearby fished area for two
exploited reef fishes. We believe this is the first time production estimates have been used to
evaluate the fishery enhancement potential of a no-take reserve. We emphasize that we did not
determine whether export (or spillover) occurs. We simply evaluated whether enough raw
material was produced inside the reserve to increase total fish catch if 100% of “excess”
production is exported. We also emphasize that this analysis assumes our study sites originally
held identical populations.

Our results varied between species. Centropyge potteri appears to produce three times more
biomass, individuals, and eggs in the no-take reserve than in the fished area. Based on our
argument, above, it appears that enough raw material is produced to enhance a fishery in an
equal-sized adjacent area. We reiterate that spillover rates of settled individuals and eggs/larvae
must be determined before final conclusions are drawn. The Parupeneus multifasciatus
population in the no-take reserve appears to produce half the biomass and eggs of that in the
fished area, suggesting that the fishery for this species is not enhanced. The production values
for P. multifasciatus appear to be driven by low abundance and high mortality in the no-take
reserve. Speculation on the cause(s) of these trends is not warranted until more robust estimates
are obtained.

Low sample size prevented us from estimating mortality for Dascyllus albisella in the no-take
reserve, and unexpectedly high estimates of mortality for Parupeneus multifasciatus in the no-
take reserve prevented an estimate of fishing mortality. Because of these difficulties, we could
not model the effects of changing size limits or fishing pressure for these species. We were able
to model changes in yield (as individuals, the measurement of concern to ornamental collectors)
and reproductive output with changing size limits and fishing mortality for Centropyge potteri.
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Current fishing effort in Maunalua Bay, based on our mortality estimates, appears to result in the
removal of 83 fish per cohort or 8% of individuals. Our static reproductive output estimates
suggest that 337,473 eggs are released per population-level reproductive event. Importantly, we
estimate that 46% of the population is female (This estimate assumes the sex-ratio vs size
relationship generated for Kaneohe Bay is applicable to the Maunalua and Hanauma Bay
populations. Although the Ls, for females is probably developmentally fixed, sex change could
occur at different sizes in different habitats). This value is a large deviation from the average of
~75% females reported by Lobel (1978). This difference may be driven by fishing because small
individuals are targeted in the aquarium trade (Ogawa & Brown 2001). Because C. potteri is a
protogynous hermaphrodite, this practice removes a disproportionate number of females from the
population.

Interestingly, our analyses suggest that targeting large individuals (which are assumed to be
almost exclusively male) would result in increased yield, increased egg production, and a sex
ratio closer to the species average. For instance, if no fishing occurs up to 91 mm SL, all females
in the population would have the chance to reproduce and change sex. This results in maximum
production of 395,184 eggs (an increase of 17%), the exact number that would be produced if no
collecting occurred. Heavier collecting effort can be directed toward the larger size classes. An
additional 50% fishing mortality on the size classes > 91 mm TL (equivalent to collecting 16%
of the population) results in an 89% increase in yield. This scenario would also drive the sex
ratio of this population toward the species average, we predict 65% of individuals would be
female under this scenario.

Although we could not model yield under various management regimes for Parupeneus
multifasciatus, the above discussion indicates that management can capitalize on reproductive
patterns. Interestingly, the current size limit for P. multifasciatus appears to confer
disproportionate protection to females, which mature at 145 mm FL. These cannot be harvested
until they reach 178 mm, at which point only 31% of the population is female. Thus current
regulations appear to promote high population-level reproductive output.

Providing they are based on sound scientific data, species-based management approaches, as
outlined in the last two paragraphs, have the added benefit of protecting exploited fish
populations over a broad geographic area. This simple but important part of life-history-based
management practices should not be overlooked when evaluating the relative merits of fishery
management techniques.

MANAGEMENT CONSIDERATIONS

(1) Laser videogrammetry allows size estimates with the accuracy and precision needed to
evaluate fishery management techniques for smaller-bodied reef fishes, many of which
are exploited in Hawaii. Importantly, the technique provides an archival record of natural
populations, and images of numerous species can be captured during the same transect.

(2) By employing laser videogrammetry, no-take marine reserves have incredible scientific
value in allowing the fishery independent estimation of fishing and natural mortality.
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Mortality values may be site specific, and a larger number of site comparisons than
conducted in this study should be completed before final conclusions are drawn.

(3) Given the warning in (2), it appears that the fishery enhancement value of no-take marine
reserves varies between species. More species-specific research is needed.

(4) The research advised in (3) also provides a basis for modeling life-history-based
management strategies. As such, it should result in a win-win situation for fishery
management.

(5) Each of the species studied here has somewhat complicated reproductive patterns. These
should be considered when modeling fishery production. For Centropyge potteri,
establishing a minimum size of ~9 cm would result in maximum population-level
reproductive output, while allowing increased collecting effort and yield in terms of
numbers of individuals.

(6) Species-specific management strategies have a far wider geographic impact than site-
based management strategies.
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