The following list of aphids reports upon collections made in Micronesia during many insect surveys. Although but nine species were taken, they represent a fair sample. It appears that aphids, while perhaps more abundant in continental tropical areas, excepting Australia, are extremely rare or wholly absent on many of the Pacific islands.

Most of the specimens herein treated were collected over a period of several years, from May 1945 to February 1954, by a number of collectors under varied auspices. (See Insects of Micronesia 1: 12-14, 195 ff.) The difficulty of determining the host plants presented a problem to collectors, which accounts for the omissions of many plant names. In a few cases only a single immature individual aphid was collected, but this lack of material did not greatly interfere with determining the name of the species. Scattered records are also available in the reports of Dr. T. Esaki and Dr. R. Takahashi which were made during the period of Japanese Mandate. Only a few specimens were taken in the Bonin and Gilbert Islands. Since most of the species treated are widely distributed and well known, full synonymies are not given.

I mounted the specimens on microscope slides, and complete series are deposited in Bishop Museum and the United States National Museum.

The United States Office of Naval Research, the Pacific Science Board (National Research Council), the National Science Foundation, and Bishop Museum have made the survey and the publication of the results possible. Field research was aided by a contract between the Office of Naval Research, Department of the Navy, and the National Academy of Sciences, NR 160-175.

I am grateful to E. C. Zimmerman and to the University of Hawaii Press for the loan of most of the illustrations in this paper.
Distributional List of Micronesian Aphids

<table>
<thead>
<tr>
<th>Micronesian Island Groups</th>
<th>Caroline</th>
<th>Palau</th>
<th>Yap</th>
<th>Carolines Atolls</th>
<th>Truk</th>
<th>Ponape</th>
<th>Kosrae</th>
<th>Marshall</th>
<th>Gilberts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subfamily Aphidinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Hyalopterus pruni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Rhopalosiphum maidis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. R. pseudobrassicae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Aphis gossypii</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. A. medicaginis</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. A. nerii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Toxoptera aurantii</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Myzodes persicae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Pentalonia nigronervosa</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subfamily Mindarinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Tetraneura akinire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subfamily Hormaphidinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Oregma bambusae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. O. bambusae carolinensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Trichoregma rhipidis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. T. esakii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Cerataphis lataniae</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Localities:
- Pacific is., Asia, Europe, Africa, N. America
- Pacific is., Asia, Europe, Africa, N. and S. America, New Zealand
- Almost cosmopolitan
- Cosmopolitan
- Pacific is., Europe, Africa, N. and S. America
- Pacific is., Asia, Europe, Africa, N. and S. America, New Zealand
- Cosmopolitan
- Cosmopolitan
- Pacific is., Asia, Africa, S. America, Europe (greenhouses), Australia
- Japan, New Caledonia
- S. Asia
- Singapore, Sumatra, Java
- Pacific is., Asia, Africa, S. America, Australia, Florida
Essig—Aphididae

KEY TO MICRONESIAN GENERA OF APHIDIDAE

1. Alate females .. 2
 Apterous females ... 11

2(1). Sensoria on antennal segment III narrow and annular; cornicles mere pores ... 3
 Sensoria on antennal segment III circular or nearly so; cornicles distinct, short or long .. 5

3(2). Antennae five-segmented, media of forewing with a branch, anal plate indented, cauda constricted basally and knobbed 4
 Antennae six-segmented, media of forewing simple, not branched, anal plate not indented, cauda not constricted basally Tetrameura

4(3). Cornicles on hairy cones ... Trichoregma
 Cornicles not on hairy cones Cerataphis and Oregma

5(2). Forewing with Rs following an abnormal course, directed posteriorly to M, and fused with it between first and second forks of M, making a closed cell between stigma and M, and making M appear as if it had three forks; hind wing lacking vein Cu Pentalonia
 Forewing without above abnormal venation 6

6(5). Media of forewing with a single branch Toxoptera
 Media of forewing with two branches 7

7(6). Cornicles swollen or tapering Hyalopterus
 Cornicles cylindrical, short, without flanges 8

8(7). Cornicles very short, almost as wide as long or a little longer than wide .. Brevicoryne
 Cornicles distinctly longer than wide 9

9(8). With prominent frontal tubercles Myzodes
 Without distinct frontal tubercles 10

10(9). Cornicles slightly swollen Rhopalosiphum
 Cornicles not swollen, tapering Aphids

11(1). Cornicles mere pores or obscured 12
 Cornicles distinct, long or short 15

12(11). Head fused with pronotum, with a pair of hornlike processes on vertex, anal plate divided, cauda constricted basally and knobbed 13
 Head distinct from pronotum, without hornlike processes, anal plate not divided, cauda not knobbed Tetrameura

13(12). Cornicles on hairy cones, body not sclerotized on dorsum, wax-pores arranged in a pair of transverse rows on abdominal tergite VIII .. Trichoregma
 Cornicles not on hairy cones, body sclerotized at least on head and pronotum, wax-pores not in a pair of transverse rows on abdominal tergite VIII .. 14

14(13). Body sclerotized over dorsum, with three divisions, wax-pores arranged in a row around whole body margin Cerataphis
 Body sclerotized on head and pronotum, with some sclerotized parts on abdomen; wax-pores in a median cluster on abdominal tergite VIII Oregma

15(11). Body without numerous capitate or clavate setae 16
 Body with numerous capitate or clavate setae; frontal tubercles protruberant Pentalonia

16(15). Frontal tubercles neither distinctly developed nor protruberant 17
 Head with prominent frontal tubercles having derm imbricate or asperate; cornicles slightly swollen Myzodes

17(16). Cornicles not longer than cauda, or distinctly shorter 18
 Cornicles longer than cauda, usually much longer 20
Insects of Micronesia—Vol. 6, No. 2, 1956

18(17). Cornicles without flanges .. **Hyalopterus**
Cornicles with a flange ... 19

19(18). Cornicles somewhat swollen ... **Brevicoryne**
Cornicles cylindrical or tapering ... **Aphis**

20(17). Cornicles somewhat swollen or clavate **Rhopalosiphum**
Cornicles tapering, never swollen .. 21

21(20). Abdomen with prominent striae on each side below cornicle **Toxoptera**
Abdomen without such striae ... **Aphis**

FIGURE 1.— *Hyalopterus pruni*, the mealy plum aphid; a summer colony produced by a single alate female on *Typha latifolia* is shown.

S UBFAMILY APHIDINAE

TRIBE APHIDINI

SUBTRIBE APHIDINA

Genus **Hyalopterus** Koch, 1854

1. **Hyalopterus pruni** (Geoffroy). (Figure 1.)

Aphis arundinis Fabricius, 1775.
Aphis spinarum Hartig, 1841.

The apterae are yellowish to green and covered with white powdery wax. So far as can be ascertained, the mealy plum aphid is being reported from Micronesia for the first time. However, the insect is widely distributed in many parts of the world. This species appears in American literature as *H. arundius* (Fabricius). The above synonymy is from Carl Börner, 1952.

DISTRIBUTION: Europe, Asia, Africa, North America, Marianas, and western Carolines.
S. MARIANA IS. GUAM: Inarajan, on Phragmites karka (Trichoon roxburghii), June 1936, Swezey.

PALAU, BABELTHUAP: Melekeiok (Marukyoku), Feb. 1936, Esaki.

HOSTS: In the temperate regions it overwinters on many species of Prunus and transfers during the summer to Arundo, Calamagrositis, Phalaris, Phragmites, Poa, Scirpus, Typha, and possibly other related plants.

FIGURE 2.—Rhopalosiphum maidis, the maize, or corn, aphid (after Zimmerman, 1948).

Genus Rhopalosiphum Koch, 1854

2. Rhopalosiphum maidis (Fitch). (Figure 2.)

This species is called the maize, corn, or corn-leaf aphid. It is a small and dark bluish-green aphid, covered with a whitish powder. It has a wide range of host plants among the Gramineae.

DISTRIBUTION: Europe, Asia, Africa, Pacific islands, New Zealand, North and South America.
S. MARIANA IS. SAIPAN: As Lito (Asilito), on corn, June 1946, Oakley; Magicienne Bay, on corn, May 1948, Lange. TINIAN: Camp Churo, on *Sorghum*, June 1946, Oakley. ROTA: On corn, June 1946, Oakley. GUAM: On grass, June 1946, Krauss; Agana, on grass, Apr. 1946, Krauss; Pt. Oca, on *Sorghum*, June 1945, G. Bohart and Gressitt.

YAP. On corn leaves, July 1946, Oakley; on corn, Aug. 1950, Goss; on corn, Aug. 1950, La Rivers.

PONAPE. Colonia, on ears of corn, Aug. 1946, Oakley; on corn, Nov. 1953, Beardsley.

Figure 3.—*Rhopalosiphum pseudobrassicae*, the turnip aphid (after Zimmerman, 1948).
This aphid is widely distributed through the tropical and temperate regions of much of the world. In volume 1 of this series (1954, Introduction, pp. 183, 186) it is referred to as widespread on maize and as found also on Sorghum on Tinian and Guam.

HOSTS: Maize, Sorghum, Coix lacryma-jobi, and other grasses. Zimmerman (1948, Insects of Hawaii 5: 77) lists 48 host plants, most of which are monocotyledons. It has long been a pest particularly of maize, millet, grasses, wheat, oats, sugar cane, and related species.

3. *Rhopalosiphum pseudobrassicae* (Davis). (Figure 3.)

Aphis pseudobrassicae Davis, 1914, Canadian Ent. 46: 231, figs. 21, 22.

Rhopalosiphum pseudobrassicae, Zimmerman, 1948, Insects of Hawaii 5: 97, fig. 56.

This is a relatively common species in Oceania, Hawaii, and Asia. C. Börner has placed this species in the genus *Lipaphis* Mordvilko, 1928. Specimens were reported by Oakley in Guam (1954, Insects of Micronesia 1: 185).

DISTRIBUTION: Nearly cosmopolitan.

S. MARIANA IS. GUAM: Reported by Oakley, but lacking in material submitted.

HOSTS: Broccoli, cardamine, Chinese cabbage, daikon, mustard cabbage, radish, shirona, tomato (after Zimmerman).

Genus Aphis Linnaeus, 1758

KEY TO MICRONESIAN SPECIES

1. Alatae ... 2
 Apterous viviparous females 4

2(1). Terminal filament of sixth antennal segment shorter than third segment....... 3
 Terminal filament of sixth antennal segment longer than third segment;
 length of body about 1 mm.; front margin of head evenly convex........... gossypii

3(2). Third antennal segment with about four sensoria on posterior face; cauda
 with only three hairs on each side.................................. medicaginis
 Third antennal segment with about nine sensoria on posterior face; cauda
 with generally more than three hairs on each side.......................... nerii

4(1). Terminal filament of sixth antennal segment shorter than third segment...... 5
 Terminal filament of sixth antennal segment longer than third segment;
 cauda with only three hairs on each side; body less than 2 mm. long........ gossypii

5(4). Cornicle distinctly longer than third antennal segment; cauda with only
 three hairs on each side; hexagonal pattern on dorsum...................... medicaginis
 Cornicle barely longer than third antennal segment; cauda with more than
 three hairs on each side; without hexagonal pattern on dorsum............... nerii
4. *Aphis gossypii* Glover (fig. 4).

Aphis convolvuli Ferrari, 1872.

Aphis citrulli Ashmead, 1882.

Aphis cucumeris Forbes, 1882.

Aphis ovatis Macchiati, 1883.

Aphis heliotsopii Macchiati, 1885.

Aphis cooki Essig, 1911.

Aphis parvus Theobald, 1915.

Aphis malvoides Das, 1918.

Aphis bauhinia Theobald, 1918.

Aphis shirakii Takahashi, 1921.

Toxoptera leonuri Takahashi, 1923.

Aphis oxalina Theobald, 1925.

Aphis viridula Nevsky, 1929.

Cerosiphon aurantii (Boyer de Fonscolombe) Börner, 1952.

![Figure 4](image_url)

Figure 4. *Aphis gossypii*, the cotton or melon aphid (after Zimmerman, 1948).
This small black and green species is called the cotton or melon aphid. Many of the apterous forms are covered with a fine whitish powdery wax. *A. gossypii* is the commonest and most widely distributed aphid in the islands of the Pacific Ocean. It is also the most destructive species and has the most extensive range of host plants. It is particularly injurious to cucurbitaceous plants, and is also a very important vector of virus diseases.

Specimens collected within the tropics are almost invariably much smaller than those from the temperate regions of the world.

DISTRIBUTION: Cosmopolitan.

VOLCANO IS. IWO JIMA: Dec. 1945, Bertram.

PONAPE. Peipalap, July 1940, Adams. Colonia, on *Cassia fistula* and taro, Nov. 1953, Beardsley; on *Acalypha*, Feb. 1948, Dybas. Metalanim, on *Messerschmidia*, Nov. 1953, Beardsley.

GILBERT IS. ONOTOA: North end of North Island, on Sida fallax, July 1951, Moul.

In addition to the above collection citations, this aphid was earlier (1911) reported on cucumbers and cotton on Guam (Insects of Micronesia 1: 179). Other reports cited in the Introduction to Insects of Micronesia are: On cabbage on Saipan (p. 173); on chili pepper on Truk by Oakley (p. 174); on eggplant by Swezey and Usinger on Guam (p. 181); on okra on Saipan and Guam (p. 184); and on taro on Guam by Peterson (p. 188). Injurious to cucurbits and widely distributed in Micronesia, it was noted on Guam in 1911 and, later, infesting eggplant on Guam by Swezey and Usinger (p. 180). Esaki (1941, Sixth Pacific Sci. Congr., Proc. 4: 412) referred to it as the "most injurious in all the islands."

HOSTS: Eggplant, cantaloupe, breadfruit, taro, cucumber, squash, pepper, orange, composite, marigold, Cassia, Cocos, Phaseolus, Blechum, Colocasia, Morinda, Premna, Capsicum, Sonneratia, Acalypha, Scaevola, Hibiscus, Pandanus, Cucurbita, Artocarpus, Wedelia, Ficus, Citrus, Pipturus, Fleurya, and Sida.

5. Aphis medicaginis Koch (fig. 5).

Aphis medicaginis Koch, 1854, Die Pflanzenlause, Aphiden (3) : 94, figs. 125-126.

Pergandeida medicaginis (Koch) Börner, 1952.

Aphis laburni, Takahashi, 1939, Tenthredo 2 (3) : 237.
The cowpea aphid (also known as the bean aphid and indigo aphid) is a shining black species, the nymphs of which are partially covered with white powdery wax, which may be arranged in a definite pattern.

DISTRIBUTION: Europe, Africa, Pacific islands, North and South America.

S. MARIANA IS. SAIPAN: On *Portulaca*, Mar. 1948, Lange; Chalan Laulau, on orange and cowpeas, June, 1946, Oakley; Luzon, Stevedore Camp, on mung bean (*Phaseolus aureus*), Mar. 1948, Lange. **ROTA:** Sabana, on *Mucuna gigantea*, May 1946, Townes; Rugi, on pigeon pea (*Cajanus cajan*), June 1946, Oakley. **GUAM:** Potts Junction, on *Cestrum*, Oct. 1952, Krauss; Barrigada, on beans, June 1936, Usinger; Mt. Lamlam, on *Hibiscus tiliaceus*, Oct. 1952, Krauss; Mt. Chachau, on sedge, May 1936, Usinger.

Figure 5.— *Aphis medicaginis*, the cowpea aphid (after Zimmerman, 1948).

Next to the cotton or melon aphid, this species is the most widely distributed in Micronesia, as is indicated by the numbers of collections and specimens taken.

HOSTS: Portulaca, orange, cowpeas, beans, mango, breadfruit, Phaseolus, Mucuna, Cajanus, Cestrum, Hibiscus, Vigna, Ipomoea, Triumfetta, Cucurbita, Scaevola.

This species has a large host range and, though it feeds chiefly on members of the family Leguminosae, its hosts include members of the Chenopodaceae, Compositae, Cruciferae, and Malvaceae.

In his report on the Entomological Survey of the Micronesian Islands under the Japanese Mandate, Esaki (1941, Sixth Pacific Sci. Congr., Proc. 4: 412) reported Aphis medicaginis as A. laburni Kaltenbach, stating that it was "commonest and most injurious to various kinds of beans including the peanut." It was found on beans and cowpeas on Saipan and on leaves of oranges on Saipan by Oakley (Insects of Micronesia 1: 171, 185). D. T. Fullaway also reported A. laburni on peanuts on Guam.
6. **Aphis nerii** Boyer de Fonscolombe (fig. 6).

* Myzus asclepiadis* Passerini, 1863.
* Aphis asclepiadis* Fitch, 1851.
* Aphis nerii asteri* Boisduval, 1867.
* Aphis lutescens* Monell, 1879.

Cerosiphina nerii (Boyer de Fonscolombe) Börner, 1952.

The oleander or milkweed aphid is a rather unusual species, in which the bodies are strikingly yellow and black. The cornicles are prominent and the cauda heavy; both are black.

DISTRIBUTION: Europe, Africa, Asia, Pacific islands, New Zealand, North and South America.

HOSTS: Plants belonging to the families Apocynaceae, Asclepiadaceae, Convolvulaceae, and Solanaceae.
Genus **Toxoptera** Koch, 1856

7. **Toxoptera aurantii** (Boyer de Fonscolombe). (Figure 7.)

Aphis camelliae Kaltenbach, 1843.

Toxoptera aurantiae, Koch, 1857.

The black citrus aphid is characterized by the very black color, the reticulations on the dorsum of the apterae, the single-branched media, and the peculiar toothed lines on the venter of the abdomen, particularly behind the bases of the cornicles.

DISTRIBUTION: Cosmopolitan.

Figure 7.— **Toxoptera aurantii**, the black citrus aphid (after Zimmerman, 1948).
Essig—Aphididae

HOSTS: Citrus, Scaevola, Ipomoea.

Subtribe MACROSIPHINA

Genus *Myzodes* Mordvilko, 1914

8. *Myzodes persicae* (Sulzer). (Figure 8.)
Aphis persicae Sulzer, 1776, Abgekürzte Geschichte der Insecten nach dem Linnaeischen System. (1) : 105.
Aphis dianthi Schrank, 1801.
Aphis malvae Mosley, 1841.
Myzus persicae (Sulzer).

Figure 8.—*Myzodes persicae*, the green peach aphid (after Zimmerman, 1948).
Aphis cynoglossi Walker, 1848.
Myzus malvae Oestlund, 1886.
Phorodon cynoglossi Williams, 1910.

The bibliography of the green peach aphid is extensive. Of the 22 or more synonyms available, only the more important ones are included here.

This familiar aphid is black and yellow or green and is characterized by the black dorsal blotch on the abdomen, the basal antennal tubercles, the dusky swollen cornicles, and the pale-yellow or green-apterous forms.

DISTRIBUTION: Nearly cosmopolitan; Mariana Is.
S. MARIANA IS. SAIPAN: On Portulaca, Mar. 1948, Lange (aptera and alates); Chalan Kanoa, on Chinese cabbage, Mar. 1948, Lange (a single apteron).

This is a widely distributed cosmopolitan species and is, without doubt, the most important and injurious aphid outside the tropics because of its great numbers, wide distribution in the temperate regions, and its ability to carry, and to inoculate plants with, many kinds of plant virus diseases.

HOSTS: Portulaca, Chinese cabbage.

Subtribe PENTALONINA

Genus Pentalonia Coquerel, 1859

9. Pentalonia nigronevrosa Coquerel (fig. 9).

Pentalonia nigronevrosa Coquerel, 1859, Soc. Ent. France, Ann. III, 7: 260, pl. 6, figs. 3; 3 a, b.

The banana aphid is readily recognized by its clouded and unusual wing venation in the forewings and the absence of the cubitus vein in the hind wings.

DISTRIBUTION: Tropical Pacific Islands, East Indies, Australia, tropical Asia, Africa, South America, Europe (greenhouses).

PONAPE. Colonia, on ginger, Nov. 1953, Beardsley; on banana, Feb. 1948, Dybas.

This aphid is already recorded as occurring on Palau, Guam, and Ponape. Esaki (1941, Sixth Pacific Sci. Congr., Proc. 4: 413) refers to it as follows: "Is found in Palau and Ponape, but is never destructive." This is referred to in Insects of Micronesia 1: 171.

Figure 9.—Pentalonia nigronervosa, the banana aphid (after Zimmerman, 1948).

HOSTS: The species feeds on a wide variety of tropical and subtropical plants, including palms, certain ferns, aroids, amaryllids, orchids, houndstongue, alpinias, elephant-ears, plantains, kahili ginger, tomato, banana, taro, *Languas, Hedychium, Morinda, Caladium, Philodendron*, and possibly others.
Insects of Micronesia—Vol. 6, No. 2, 1956

Subfamily MINDARINAE

Tribe ERIOsomATINi

Genus TetranEura Hartig, 1841

10. TetranEura akinire Sasaki (fig. 10).

This is a small black and yellow aphid which develops in pointed pouch galls 8-13 mm. long and 4-5 mm. in diameter on the leaves of *Ulmus japonica*. It was originally described by Sasaki in Japan in 1904.

![Figure 10](image)

Figure 10.—*TetranEura akinire*: Rostrum, antennae, cornicles, wings, and cauda.

DISTRIBUTION: Japan, western Pacific islands.

HOST: *Ulmus japonica*.

Besides the records above, this species was also taken at Noumea, New Caledonia, May 1950, Krauss.

Subfamily HORMaphINAE

Tribe HORMaphidini

Genus Oregma Buckton, 1893

11. Oregma bambusae Buckton.

Body without well-developed wax-pores; the fore and middle tarsi with two long setae and two shorter median setae on the basal segment, but the hind tarsi with only two long setae on the basal segment. (After Takahashi.)
DISTRIBUTION: Southern Asia, western Caroline Is.

HOST: Bambusa stenostachya.

Figure 11. — *Oregma bambusae carolinensis*. a, b, apterous female: a, frontal horns; b, last rostral segment. c, d, first instar nymph: c, last rostral segment; d, cephalo-prothorax. (After Takahashi, 1941.)

12. *Oregma bambusae carolinensis* Takahashi (fig. 11).

Oregma bambusae var. carolinensis Takahashi, 1941, Tenthredo 3 (3): 211, fig. 2.

Apterous viviparous female: Body sclerotized over the dorsum, but meso- and metathorax and abdominal segments distinct; wax-pores wanting, or only one to three oval ones present at middle of eighth abdominal tergite. Frontal horns short, shorter than space between them, as long as scape, narrow, divergent, rounded apically. Cornicles small, indistinctly surrounded with three to five setae, which are distant from cornicles. Distal rostral segment about 1.5 times as long as wide, parallel at sides, or slightly narrowed basally. Body length 1.7 mm.; antenna 0.3 mm.; frontal horn 0.05-0.055 mm.; pronotum 0.6 mm. wide; cornicle 0.032 mm. wide at apex; hind tibia 0.55 mm.; hind tarsus 0.138 mm.

Alate viviparous female: Abdomen slightly sclerotized on last two tergites, with a small sclerotized part at the base of each cornicle. Antennae with 30 sensoria on third segment, 13 on fourth, nine on fifth; relative lengths of segments about as follows: III-22, IV-9, V-8 to 9. Cornicles very small. Body length 2.2 mm.; antenna 0.74 mm.; cornicle 0.023 mm. wide at apex. (After Takahashi.)

DISTRIBUTION: Western Caroline Is.

YAP. YAP: Okau (Okao), Sept. 1939, Esaki. GAGIL-TOMIL: Maki, Tomil, Sept. 1939, Esaki.

HOST: Bambusa vulgaris.
Genus *Trichoregma* Takahashi, 1929

Hille Ris Lambers [1955, Fiji Agric. Jour. 24 (3-4) : 1] has synonymized *Trichoregma* with *Asteoptyx*, but Takahashi believes the matter is not yet fully clarified. *Trichoregma* may prove to be the summer form on the intermediate host of *Asteoptyx*, which produces gall on *Styrax*, the primary host. However, *Asteoptyx* may need to be divided.

This material differs from the original description in lacking wax-pores on the head, thorax, and basal part of the abdomen in the apterous form, and in possessing fewer (about 25-35) sensoria on the third antennal segment in the alate form. These characters are, however, variable. (After Takahashi, 1941.)

DISTRIBUTION: Singapore, Sumatra, Java, western Caroline Is.

PALAU: Peleliu: Ngardololok (Garudoro), Aug. 1939, Esaki.

HOST: *Cocos nucifera*.

![Figure 12.—*Trichoregma esakii*, cephalo-prothorax and cornicle of adult female (after Takahashi, 1941).](image)

Trichoregma esakii Takahashi, 1941, Tenthredo 3 (3) : 210, fig. 1.

Apterous viviparous female: Body soft; frontal horns as long as basal two antennal segments combined, narrowed apically, parallel. Antennae a little shorter than width of head across eyes, four-segmented; third segment narrowed basally, slightly curved, lacking spinules and granules, with about four short setae; relative lengths of segments: III-23 to 25, IV-17. Rostrum reaching middle coxae, distal segment as long as wide, blunt apically. Cephalo-prothorax with about 22 dorsal setae; thoracic and basal seven abdominal segments with four setae in a row on dorsum; eighth abdominal tergite a little sclerotized, with eight setae including lateral ones, most of which are in a row. Cornicles small, on shallow cones, which have five to eight setae. Cauda constricted basally, with about 7-9 setae.
Essig—Aphididae

setae. Anal plate divided. Legs short, with a few setae; fore tarsus with a median stiff seta and a pair of much longer fine setae on basal segment; middle and hind tarsi each with a pair of long fine setae. Meso- and metathorax and basal six abdominal segments with one to five oval wax-pores in a dense row on side, or sometimes lacking; seventh abdominal segment with two or three similar wax-pores; eighth usually with no wax-pores, sometimes with one or two small oval or circular ones on each side. Body length 1.0-1.16 mm.; cornicle 0.023-0.032 mm, wide at apex. (After Takahashi.)

DISTRIBUTION: Western Caroline Is.
PALAU. Babelthuap: Ngchesar (Kaishar), Aug. 1939, Esaki.
HOST: Bamboo.

Genus Cerataphis Lichtenstein, 1882

Bodies black or very dark green; cornicles pore-like; anal plate bilobed, cauda knobbed, flattened, aptera broad, flattened with two body divisions, aleurodid-like marginal border, two short toothlike pental projections; with white marginal wax fringe in life. Wax-glands, five-segmented antennae. Alates with many ringlike sensoria on segments III-V, wings with media one-branched; hind wings normal.

15. Cerataphis lataniae (Boisduval). (Figures 13, 14.)

Coccus lataniae Boisduval, 1867, Ent. Horticole, 355, figs. 49, 50.

Boisduvalia lataniae (Boisduval) Signoret, 1868, Soc. Ent. France, Ann. IV, 8: 400, pl. 10, figs. 2, 2 a.

Figure 13.—Cerataphis lataniae: the latania or palm aphid (after Zimmerman, 1948).

The apterous forms of the palm or latania aphid, a unique and beautiful species, are often mistaken for the nymphs of whiteflies because of the flattened and oval body which is circumscribed by a band or fringe of white wax plates. When the wax is removed they are similar to many other aphids. The alates, though unique, are also typical of many other aphids.

Figure 14.—Cerataphis lataniae, the palm or latania aphid, on Epidendrum orchid. This colony of nymphs was completely covered with debris by Pheidole megacephala ants. The “ant shed” has been removed, but some of the remaining detritus can be seen adhering to the plant. (After Zimmerman, 1948.)
DISTRIBUTION: Pacific islands, Africa, South America, Asia, Australia, Florida, Marianas, and Caroline Is.

YAP. YAP: Okau (Okao), Esaki. GAGIL-TOMIL: Gachapar, Tomil, Esaki.
PONAPE. Mt. Kupwuriso, alt. 1,000-1,500 ft., beating, Mar. 1948, Dybas.

This widely distributed species is quite abundant in the tropical areas of the Pacific islands, Africa, South America, Asia, Australia, China, and Florida; and it is found in greenhouses throughout much of the rest of the world. It is rather surprising that only one collection of this conspicuous aphid was made during the Micronesian surveys.

Other species of the Aphididae that might well be expected to occur in Micronesia are: Aphis citricidus Kirkaldy, A. helichrysi Kaltenbach, A. sacchari Zehntner, Brevicoryne brassicae (Linnaeus), and Idiopterus nepho-lepidis Davis.